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In grid workflow systems, a checkpoint selection strategy is responsible for selecting checkpoints for 
conducting temporal verification at run-time execution stage. Existing representative checkpoint selection 
strategies often select some unnecessary checkpoints and omit some necessary ones because they cannot adapt 
to the dynamics and uncertainty of run-time activity completion duration. In this paper, based on the dynamics 
and uncertainty of run-time activity completion duration, we develop a novel checkpoint selection strategy that 
can adaptively select not only necessary but also sufficient checkpoints. Specifically, we introduce a new 
concept of minimum time redundancy as a key reference parameter for checkpoint selection. An important 
feature of minimum time redundancy is that it can adapt to the dynamics and uncertainty of run-time activity 
completion duration. We develop a method on how to achieve minimum time redundancy dynamically along 
grid workflow execution, and investigate its relationships with temporal consistency. Based on the method and 
the relationships, we present our strategy and rigorously prove its necessity and sufficiency. The simulation 
evaluation further experimentally demonstrates such necessity and sufficiency and its significant improvement 
on checkpoint selection over other representative strategies.   
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1. INTRODUCTION  

In a grid architecture, a grid workflow management system is a type of high-level grid 
middleware which is supposed to support modelling, redesign and execution of large-
scale sophisticated scientific and business processes in a variety of e-science and e-
business applications such as climate modelling, astrophysics, high energy physics, 
international finance and insurance [Abramson et al. 2004; Cao et al. 2003; Foster et al. 
2002, Marinescu 2002]. Then, they are instantiated at run-time instantiation stage by an 
instantiation grid service [Amin et al. 2004; Cybok 2004]. Finally, they are executed at 
run-time execution stage by facilitating the computing and resource sharing power of 
underlying grid infrastructure. The execution is coordinated between grid services by the 
grid workflow engine that itself is a high-level grid service [Cybok 2004; Huang 2003]. 
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1.1 Temporal Constraints 

In reality, complex scientific or business processes are normally time constrained [Al-Ali 
et al. 2004; Buyya et al. 2005; Yu et al. 2005]. Accordingly, temporal constraints are 
often enforced when they are modelled as grid workflow specifications. The types of 
temporal constraints mainly include upper bound, lower bound and fixed-time [Chen and 
Yang 2005b; Eder et al. 1999]. An upper bound constraint between two activities is a 
relative time value so that the duration between them must be less than or equal to it 
[Eder et al. 1999]. A lower bound constraint between two activities is a relative time 
value so that the duration between them must be greater than or equal to it [Eder et al. 
1999]. A fixed-time constraint at an activity is an absolute time value by which the 
activity must be completed [Chen and Yang 2005b; Li et al. 2004]. For example, a 
climate modelling grid workflow must be completed by the scheduled time [Abramson et 
al. 2004], say 7:00pm, so that the weather forecast can be broadcast at a later time. Here, 
7pm is a fixed-time constraint. Some references have also addressed two other types of 
temporal constraints: deadline and fixed-date [Eder et al. 1999; Marjanovic and Orlowska 
1999]. [Marjanovic and Orlowska 1999] divides deadline constraints into relative and 
absolute deadline constraints. A relative deadline constraint is a time value which is 
relative to the start time of the grid workflow. An absolute deadline constraint is an 
absolute time value such as 7:00pm, May 1. Apparently, a relative deadline constraint is 
actually an upper bound constraint whose start activity is exactly the start activity of the 
whole grid workflow, while an absolute deadline constraint is just a fixed-time constraint. 
Hence, in this paper, we do not discuss deadline constraints separately. In addition, 
according to [Eder et al. 1999], a fixed-date constraint at an activity is an absolute time 
value by which the activity must be completed. Apparently, a fixed-date constraint is just 
a fixed-time constraint. Hence, we do not discuss fixed-date constraints separately either. 
 
1.2 Temporal Verification and Checkpoint Selection 

After temporal constraints are set, temporal verification must be conducted so that we can 
identify and handle temporal violations in time in order to ensure the overall temporal 
correctness. At build-time and run-time instantiation stages, temporal verification is static 
because there are no any specific execution times. Each temporal constraint needs to be 
verified only once with the consideration of all covered activities. Therefore, we need not 
decide at which activities we should conduct the verification. At run-time execution stage 
however, activity completion durations vary and consequently, we may need to verify 
each temporal constraint many times at different activities. However, conducting the 
verification at every activity is not efficient as we may not have to do so at some 
activities such as those that can be completed within allowed time intervals. So where 
should we conduct the temporal verification? The activities at which we conduct the 
verification are called checkpoints [Eder et al. 1999; Marjanovic and Orlowska 1999; 
Zhuge et al. 2001]. This is the topic of the research field on CSS (Checkpoint Selection 
Strategies) [Eder et al. 1999; Marjanovic and Orlowska 1999; Zhuge et al. 2001].  

Some representative checkpoint selection strategies have been proposed [Eder et al. 
1999; Marjanovic and Orlowska 1999; Zhuge et al. 2001; Chen et al. 2004; Chen and 
Yang 2005a; Chen and Yang 2005c]. They are detailed in Section 3. However, they 
cannot adapt to the dynamics and uncertainty of run-time activity completion duration. 
Consequently, they often suffer from the limitations of selecting unnecessary checkpoints 
and omitting necessary ones. Unnecessary checkpoints will result in unnecessary 
temporal verification while omitted checkpoints will cause necessary verification omitted. 
Clearly, neither is desirable. Therefore, in this paper, based on the dynamics and 
uncertainty of run-time activity completion duration, we develop a new checkpoint 
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selection strategy that can adaptively select not only necessary but also sufficient 
checkpoints. 

 
1.3 Paper Organisation 

The remainder of the paper is organised as follows. In Section 2, we represent some time 
attributes of grid workflows. In Section 3, we detail the related work and problem 
analysis for checkpoint selection. Then, in Section 4, we introduce a new concept of 
minimum time redundancy which will serve as a key reference parameter for our strategy. 
An important feature of minimum time redundancy is that it can adapt to the dynamics 
and uncertainty of run-time activity completion duration. We also develop a method on 
how to obtain minimum time redundancy dynamically along grid workflow execution. 
After that, in Section 5, we investigate the relationships between minimum time 
redundancy and temporal consistency in depth. Based on these relationships, we present 
our new strategy and rigorously prove its necessity and sufficiency for checkpoint 
selection. In Section 6, we perform a simulation to demonstrate the necessity and 
sufficiency of our strategy and the significant improvement on checkpoint selection over 
other representative strategies. Finally, in Section 7, we conclude our contributions and 
point out future work. 

 
2. TIMED GRID WORKFLOW REPRESENTATION 

According to [Li et al. 2003; Marjanovic and Orlowska 1999], based on the directed 
network graph (DNG) concept, a grid workflow can be represented as a DNG-based grid 
workflow graph, where nodes correspond to activities and edges correspond to 
dependencies between activities. In [Li et al. 2003; Marjanovic and Orlowska 1999], the 
iterative structure is nested in an activity that has an exit condition defined for iterative 
purposes. Accordingly, the corresponding DNG-based grid workflow graph is 
structurally acyclic1. Here we assume that a grid workflow is well structured, i.e. there 
are no any structure errors such as deadlocks, livelocks, dead activities and so on. The 
structure verification is outside the scope of this paper and can be referred to some other 
references such as [Aalst 1998; Aalst 2000; Sadiq and Orlowska 2000].  
 
2.1 Activity Time Attributes and Temporal Constraints 

To represent activity time attributes in a grid workflow, we borrow some concepts from 
[Chinn and Madey 2000; Eder et al. 1999; Marjanovic and Orlowska 1999] such as the 
maximum, mean or minimum duration as a basis. We denote the ith activity of a grid 
workflow as ai. For each ai, we denote its maximum duration, mean duration, minimum 
duration, run-time start time, run-time end time and run-time completion duration as 
D(ai), M(ai), d(ai), S(ai), E(ai) and R(ai) respectively. If there is a path from ai to aj (i<j), 
the maximum duration, mean duration and minimum duration between them are denoted 
as D(ai, aj), M(ai, aj) and d(ai, aj) respectively. M(ai) indicates that statistically ai can be 
completed around its mean duration. Other time attributes are self-explanatory. 
According to [Liu 1998; Son and Kim 2001], D(ai), M(ai) and d(ai) can be obtained based 
on the past execution history. The past execution history covers the delay time incurred at 
ai such as the setup delay, queuing delay, synchronisation delay, network latency and so 
on. The detailed discussion of D(ai), M(ai) and d(ai) is outside the scope of this paper and 
can be referred to [Chen and Yang 2005b; Eder et al. 1999; Marjanovic and Orlowska 
1999]. For a specific execution of ai, the delay time is included in R(ai). Normally, we 
have d(ai)≤M(ai)≤D(ai) and d(ai)≤R(ai)≤D(ai). 

 
1 Refer to [Li et al. 2003; Marjanovic and Orlowska 1999] for more details. 
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Regarding the representation of temporal constraints, according to Section 1.1, 
conceptually a lower bound constraint is symmetrical to an upper bound constraint. For 
example, concerning a lower bound constraint, we often check whether the duration 
between its start and end activity is “≥” its value. For an upper bound constraint, we often 
check whether the duration between its start and end activity is “≤” its value. As to a 
fixed-time constraint, we can view the first activity of a grid workflow as its start activity. 
Then, the fixed-time constraint can be viewed as a special upper bound constraint whose 
start activity is the first activity and whose end activity is the one at which the fixed-time 
constraint is. As such, in this paper, we focus on upper bound constraints only. The 
corresponding checkpoint selection discussion and results can be equally applied to lower 
bound and fixed-time constraints. Correspondingly, if there is a path from ai to aj (i<j) 
and an upper bound constraint between them, we denote the upper bound constraint as 
U(ai, aj) and its value as u(ai, aj). 

For convenience of the discussion, we only consider one execution path in the acyclic 
DNG-based grid workflow graph without losing generality. As to a selective or parallel 
structure, each branch is an execution path. Therefore, we can equally apply the results 
achieved in this paper to each branch directly. In overall terms, for a grid workflow 
containing many parallel, selective and/or mixed structures, firstly, we treat each 
structure as an activity. Then, the whole grid workflow will be an overall execution path 
and we can apply the results achieved in this paper to it. Secondly, for every structure, for 
each of its branches, we continue to apply the results achieved in this paper. Thirdly, we 
carry out this recursive process until we complete all branches of all structures. 
Correspondingly, between ai and aj, D(ai, aj) is equal to the sum of all activity maximum 
durations, M(ai, aj) is equal to the sum of all activity mean durations, and d(ai, aj) is equal 
to the sum of all activity minimum durations. 
 
2.2 Temporal Consistency States 

Besides the time attributes represented in Section 2.1, [Chen and Yang 2005b] has 
identified and defined four temporal consistency states which are based on [Eder et al. 
1999]. They are SC (Strong Consistency), WC (Weak Consistency), WI (Weak 
Inconsistency) and SI (Strong Inconsistency). Since the checkpoint concept is related to 
run-time execution stage and the minimum time redundancy concept to be addressed in 
Section 4 is related to run-time instantiation and execution stages, we summarise the 
definitions for these two stages here. The definitions for build-time stage and the detailed 
discussion can be found in [Chen and Yang 2005b; Eder et al. 1999]. 

Definition 1. At run-time instantiation stage, U(ai, aj) is said to be of: 
1) SC if with D(ai, aj) ≤ u(ai, aj); 
2) WC if M(ai, aj) ≤ u(ai, aj) < D(ai, aj);  
3) WI if d(ai, aj) ≤ u(ai, aj) < M(ai, aj);  
4) SI if u(ai, aj) < d(ai, aj). 

Definition 2. At run-time execution stage, at checkpoint ap between ai and aj, U(ai, aj) 
is said to be of: 

1) SC if R(ai, ap) + D(ap+1, aj) ≤ u(ai, aj);  
2) WC if R(ai, ap) + M(ap+1, aj) ≤ u(ai, aj) < R(ai, ap) + D(ap+1, aj);  
3) WI if R(ai, ap) + d(ap+1, aj) ≤ u(ai, aj) < R(ai, ap) + M(ap+1, aj);  
4) SI if u(ai, aj) < R(ai, ap) + d(ap+1, aj). 

Definition 2 actually mixes the duration prediction after the checkpoint, i.e. D(ap+1, 
aj), M(ap+1, aj) and d(ap+1, aj), with actual completion duration obtained until the 
checkpoint, i.e. R(ai, ap). For clarity, we further depict SC, WC, WI and SI in Figure 1. 

 



 
 

Fig. 1. Definitions of SC, WC, WI and SI at run-time instantiation and execution stages 
 

According to [Chen and Yang 2005b], along grid workflow execution, for SC, we 
need not do anything as the corresponding upper bound constraints can be kept. For WC, 
by utilising the possible time redundancy of succeeding activity execution, the 
corresponding upper bound constraints may still be kept. Specific methods for utilising 
the possible time redundancy can be found in [Chen and Yang 2005b]. For WI and SI, 
basically for most cases, the corresponding upper bound constraints cannot be kept. 
Consequently, the corresponding exception handling is triggered to adjust them to SC or 
WC. Specific exception handling methods can be found in [Hagen and Alonso 2000]. 

Since WI and SI are adjusted to SC or WC by the exception handling, along grid 
workflow execution, checkpoint selection actually focuses on selecting checkpoints for 
verifying previous SC and WC upper bound constraints to check their current consistency. 

 
3. RELATED WORK AND PROBLEM ANALYSIS 

3.1 Existing Representative Checkpoint Selection Strategies 

Different representative checkpoint selection strategies have been proposed in the 
literature. To the best of our knowledge, we list them below. 

• CSS1: [Eder et al. 1999] takes every activity as a checkpoint. We denote this 
strategy as CSS1.  

• CSS2: [Zhuge et al. 2001] sets checkpoints at the start time and end time of each 
activity. We denote this strategy as CSS2.  

• CSS3: [Marjanovic and Orlowska 1999] takes the start activity as a checkpoint 
and adds a checkpoint after each decision activity is executed. We denote this 
strategy as CSS3.  

• CSS4: [Marjanovic and Orlowska 1999] also mentions another checkpoint 
selection strategy: user-defined static checkpoints. That is that users define some 
static activity points as checkpoints at build-time stage. We denote this strategy 
as CSS4.  

• CSS5: [Chen et al. 2004] selects activity ai as a checkpoint if R(ai) > D(ai). We 
denote this strategy as CSS5.  
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• CSS6: [Chen and Yang 2005a] selects activity ai as a checkpoint if R(ai) > M(ai).  
We denote this strategy as CSS6.  

• CSS7: [Chen and Yang 2005c] introduces a minimum proportional time 
redundancy for each activity and then selects an activity as a checkpoint when 
its completion duration is greater than the sum of its mean duration and its 
minimum proportional time redundancy. We denote this strategy as CSS7. 

 
3.2 Problem Analysis 

In this section, we analyse the problem of CSS1~CSS7 on checkpoint selection. 
Considering a climate modelling grid workflow which contains hundreds of thousands of 
activities and sub activities such as discovering proper local climate models, data transfer, 
computing the impact of local thunderstorms on overall climate, and so on [Abramson et 
al. 2004], we take one of its segments as the example to reason about the problem 
analysis. Suppose the segment is the kth one and involves two upper bound constraints 
denoted as U1 and U2. We depict them and attach some time values in Figure 2. The time 
unit is hour. Figure 2 contains a selective structure which has two branches, i.e. Branch 1 
and Branch 2. There can be many execution instances for Figure 2. We use some 
instances which affect SC of U1 and U2. The corresponding discussion for WC is similar. 
 

 
 

Fig. 2. A sample segment of a climate modelling grid workflow 
 

CSS1 and CSS2 select every activity as a checkpoint. We consider an execution 
instance where the execution goes Branch 1 and R(ak1)=9. Then, at ak1, we have (1) 
below.  

R(ak1)+D(ak2)+D(ak3)+D(ak4)+D(ak5)+D(ak7)+D(ak8)+D(ak9)+D(ak10)=9+16+8+10+6
+15+12+7+10 = 93 < u(U1)      (1) 

According to Definition 2, (1) means that U1 is of SC. That is to say, we actually need not 
select ak1 as a checkpoint for conducting temporal verification because current U1 can be 
kept and hence there are no any temporal violations. Therefore, CSS1 and CSS2 may 
select some unnecessary checkpoints. Since they take every activity as a checkpoint, they 
do not omit any necessary ones. 
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We now discuss CSS3 and CSS4. In Figure 2, CSS3 only selects a1 (the start activity) 
and ak3 (a decision activity) as checkpoints. We consider an execution case where the 
execution goes Branch 1, R(ak1) =11 and R(ak2)=22. Run-time activity execution duration 
is dynamic. Hence, it is possible for R(ak2) to exceed D(ak2) which is 16. In that case, at 
ak2, we have (2) below. 

R(ak1)+R(ak2)+D(ak3)+D(ak4)+D(ak5)+D(ak7)+D(ak8)+D(ak9)+D(ak10)=11+22+8+10+
6+15+12+7+10=101 > u(U1)      (2) 

According to Definition 2, (2) means that U1 is violated and is not of SC. That is to say, 
we should select ak2 as a checkpoint so that we can identify the temporal violation in time. 
However, CSS3 does not select it as a checkpoint. Hence, CSS3 may omit some necessary 
checkpoints. We further consider another execution case where the execution goes 
Branch 1, R(ak1)=11, R(ak2)=14 and R(ak3)=6. Then, at ak3, we have (3) below. 

R(ak1)+R(ak2)+R(ak3)+D(ak4)+D(ak5)+D(ak7)+D(ak8)+D(ak9)+D(ak10)=11+14+6+10 
+6+15+12+7+10=91 < u(U1)      (3) 

According to Definition 2, (3) means that U1 is of SC. That is to say, we actually need not 
select ak3 as a checkpoint. However, CSS3 does select it as a checkpoint. Hence, CSS3 
may select some unnecessary checkpoints. Regarding CSS4, it defines some static activity 
points as checkpoints at build-time stage. Suppose that it defines ak3, ak5 and ak8 as 
checkpoints. Then, the same problem of CSS3 on checkpoint selection will happen. The 
corresponding reasoning is similar to the above for CSS3.  

We now move on to CSS5, CSS6 and CSS7. We consider an execution case of Figure 2 
where the execution goes Branch 2, R(ak1)=9, R(ak2)=14, R(ak3)=6, R(ak6)=11, R(ak7)=13 
and R(ak8)=15. Then at ak8, we have (4) below.  

R(ak1)+R(ak2)+R(ak3)+R(ak6)+R(ak7)+R(ak8)+D(ak9)+D(ak10)=9+14+6+11+13+15+7+
10=85 < u(U1)      (4) 

According to Definition 2, (4) means that U1 is of SC. That is to say, we need not select 
ak8 as a checkpoint. However, since R(ak8)>D(ak8)=12 and R(ak8)>M(ak8)=10, both CSS5 
and CSS6 select ak8 as a checkpoint. Hence, CSS5 and CSS6 may select some unnecessary 
checkpoints. [Chen et al. 2004; Chen and Yang 2005a] have proved that we need not 
select activity ai as a checkpoint if R(ai) ≤ D(ai) or R(ai) ≤ M(ai). Accordingly, CSS5 and 
CSS6 do not omit any necessary checkpoints. Regarding CSS7, in [Chen and Yang 2005c], 
CSS7 introduces minimum proportional time redundancy (MPTR) to each activity. We 
denote that at ak8 as MPTR(ak8). According to [Chen and Yang 2005c], U1 has a build-
time static time redundancy that is shown in (5) below. 

u(U1)-[D(ak1)+D(ak2)+D(ak3)+D(ak6)+ D(ak7)+D(ak8)+D(ak9)+D(ak10)] = 7       (5) 
U2 also has a build-time static time redundancy that is shown in (6) below. 

u(U2)-[D(ak8)+D(ak9)+D(ak10)+D(ak11)+D(ak12)] = 4                     (6) 
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CSS7 allocates the build-time static time redundancy of U1 to ak8 in the proportion of 
D(ak8)-M(ak8) among all D(aki)-M(aki) (i=1~3, 6~10). Then, ak8 holds a static time quota. 
According to CSS7, we first sort all D(aki)-M(aki) (i=1~3, 6~10) in ascending order and 
we then get a sorting list. We denote items in the sorting list as L1, L2, ... , Lj. Then if 
D(ak8)-M(ak8) is ranked number m, i.e. Lm (1≤m≤j), the time quota allocated to ak8 is equal 

to the build-time static time redundancy of U1 multiplied by {Lj-m+1 / }. 

Based on this, we can figure out that j=8, m=5, L

)]()([
10~6

kiki aMaD −

m=D(ak8)-M(ak8)=2, Lj-m+1=D(ak7)-
M(ak7)=2, and the sum of all D(aki)-M(aki) (i=1~3, 6~10) is 20. Hence, the static time 
quota allocated to ak8 is 7*(2/20), i.e. 0.7. Similarly, we can figure out that the static time 
quota allocated to ak8 from the static time redundancy of U2 is 0.5. According to CSS7 
[Chen and Yang 2005c], MPTR(ak8) is equal to the minimum one of the two quotas, i.e. 
0.5. CSS7 selects ak8 as a checkpoint if R(ak8)>M(ak8)+MPTR(ak8). In this case, R(ak8)=15 
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and M(ak8)+MPTR(ak8)=10+0.5=10.5. Hence, we do have R(ak8)>M(ak8)+MPTR(ak8). 
That is to say, CSS7 selects ak8 as a checkpoint although it is not necessary. Therefore, 
CSS7 may also select some unnecessary checkpoints. [Chen and Yang 2005c] has proved 
that we need not select activity ai as a checkpoint if R(ai)≤M(ai)+MPTR(ai). Accordingly, 
CSS7 does not omit any necessary checkpoints.   

In summary, CSS1 and CSS2 may select some unnecessary checkpoints although they 
do not omit any necessary ones. CSS3 and CSS4 may select some unnecessary checkpoints 
and omit some necessary ones. CSS5, CSS6 and CSS7 may select some unnecessary 
checkpoints without omitting any necessary ones. 
 
3.3 Further Anatomy of the Problem 

We conclude that the radical reason for the problem of existing representative checkpoint 
selection strategies is that they cannot fully adapt to the dynamics and uncertainty of run-
time activity completion duration. The further explanation is presented below. 

Grid workflow execution environments are very dynamic since they normally 
encompass multiple administrative domains (organisations) over a wide area network 
[Deelman et al. 2003; Han 1998; Klingemann 1999a; Klingemann 1999b]. A grid service 
may need to simultaneously serve the execution of a number of grid workflow activities 
from many grid workflow instances while sometimes many grid services are available for 
one activity execution [Buyya et al. 2005; Foster 2005]. As such, the completion duration 
of a grid workflow activity is highly dynamic and uncertain [Chen and Yang 2005b; 
Reichert et al. 1999; Rinderle et al. 2004]. We may need to verify temporal constraints at 
some activities while at others we do not need to. That is to say, the corresponding 
checkpoint selection should have the capability of adapting to such dynamics and 
uncertainty.  

However, CSS1, CSS2, CSS3 and CSS4 do not have this capability because they 
predefine checkpoints before grid workflow execution. Some of the activities which are 
predefined as checkpoints may be able to be completed within allowed time intervals and 
consequently their executions will not impact the consistency of any temporal constraints. 
That is to say, at such activities, we actually need not conduct any temporal verification, 
i.e. we should not have taken them as checkpoints. Therefore, CSS1, CSS2, CSS3 and CSS4 
may select some unnecessary checkpoints. In addition, some of other activities which are 
not predefined as checkpoints may be completed exceeding the allowed time intervals 
and consequently their executions may impact the consistency of some temporal 
constraints. Hence, at such activities, we need to conduct temporal verification, i.e. we 
should have taken them as checkpoints. Therefore, although CSS1 and CSS2 do not omit 
any necessary checkpoints as they select every activity as a checkpoint, CSS3 and CSS4 
may omit some.  

CSS5, CSS6 and CSS7 have improved CSS1, CSS2, CSS3 and CSS4 in their capability of 
adapting to the dynamics and uncertainty of run-time activity completion duration. They 
utilise the activity completion duration during their checkpoint selection process. 
However, they have not done it fully because their key reference parameters are static. 
These parameters are maximum duration, mean duration and minimum proportional time 
redundancy. According to [Chen et al. 2004; Chen and Yang 2005a, Chen and Yang 
2005c] and Section 3.2, all of them are statically set at build-time stage without taking 
into consideration of run-time activity completion duration. Therefore, CSS5, CSS6 and 
CSS7 still cannot fully adapt to the dynamics and uncertainty of run-time activity 
completion duration. In Section 3.2, we have seen that they still suffer from the limitation 
of selecting unnecessary checkpoints. 

Regarding the above limitations of the existing representative checkpoint selection 
strategies, we may raise the research question: “Can we develop a checkpoint selection 



strategy that can adaptively select necessary yet sufficient checkpoints on the fly along 
grid workflow execution?”. This question and some concepts have been mentioned 
briefly in [Chen and Yang 2006], but no sufficient details were provided there. In this 
paper, we answer the question comprehensively by presenting such a strategy in detail. 
Our fundamental idea is that based on CSS5, CSS6 and CSS7, we further take activity 
completion duration into the construction of key reference parameters. For this purpose, 
we introduce a new concept of minimum time redundancy which serves as a key 
reference parameter for our checkpoint selection. An important feature of minimum time 
redundancy is that it is based on activity completion duration and consequently can adapt 
to the dynamics and uncertainty of run-time activity completion duration. The detailed 
discussion of minimum time redundancy is presented in the next section.  

 
4. MINIMUM TIME REDUNDANCY 

In this section, we discuss minimum time redundancy in detail. According to Section 2, 
since checkpoint selection is actually for SC and WC upper bound constraint verification, 
minimum time redundancy consists of minimum SC and WC time redundancy. The 
former is for SC upper bound constraints and the later is for WC ones. 

First, we introduce the concept of SC and WC time redundancy from one upper 
bound constraint in Section 4.1. Then, we introduce minimum SC and WC time 
redundancy from multiple upper bound constraints in Section 4.2. After that, in Section 
4.3, we discuss how to obtain minimum SC and WC time redundancy dynamically along 
grid workflow execution. 

 
4.1 SC and WC Time Redundancy 

At run-time execution stage, we consider a SC upper bound constraint, say U(ai, aj), as 
shown in Figure 3. At activity point ap between ai and aj, according to Definition 2, we 
have R(ai, ap) + D(ap+1, aj) ≤ u(ai, aj). Clearly, there is a time difference: u(ai, aj) – [R(ai, 
ap) + D(ap+1, aj)]. The difference means that if the succeeding activity execution can be 
controlled within the difference, U(ai, aj) can still be kept as SC regardless whether the 
execution consumes more time than scheduled. Correspondingly, we define this time 
difference as SC time redundancy of U(ai, aj) at activity point ap, and denote it as 
TRSC(U(ai, aj), ap) (TRSC: SC Time Redundancy). Hence, we have Definition 3 below. 

Definition 3. At activity point ap between ai and aj (i<j), let U(ai, aj) be of SC (as 
shown in Figure 3). Then, SC time redundancy of U(ai, aj) at ap is defined as u(ai, aj) – 
[R(ai, ap) + D(ap+1, aj)] and denoted as TRSC(U(ai, aj), ap): 

TRSC(U(ai, aj), ap) = u(ai, aj) – [R(ai, ap) + D(ap+1, aj)]. 
 

 
 

Fig. 3. SC U(ai, aj) and its SC time redundancy at ap
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For a WC upper bound constraint, say U(ak, al), similarly we have WC time 
redundancy and define it in Definition 4 below. 

Definition 4. At activity point ap between ak and al (k<l), let U(ak, al) be of WC (as 
shown in Figure 4). Then, WC time redundancy of U(ak, al) at ap is defined as u(ak, al) – 
[R(ak, ap) + M(ap+1, al)] and denoted as TRWC(U(ak, al), ap): 

TRWC(U(ak, al), ap) = u(ak, al) – [R(ak, ap) + M(ap+1, al)]. 
 

     
 

Fig. 4. WC U(ak, al) and its WC time redundancy at ap

 
For example, we consider an execution instance of Figure 2 where the execution goes 

Branch 1, R(ak1)=9, R(ak2)=11, R(ak3)=7, R(ak4)=9, R(ak5)=5, R(ak7)=13 and R(ak8)=10. 
Then at ak8, according to Definition 2, U1 and U2 are of SC. Correspondingly, we have 
SC time redundancies as shown in (7) and (8) below.  

TRSC(U1, ak8)=u(U1)–[R(ak1)+R(ak2)+R(ak3)+R(ak4)+R(ak5)+R(ak7)+R(ak8)+D(ak9, 
ak10)]=100-[9+11+7+9+5+13+10+7+10]=19         (7) 

TRSC(U2, ak8)=u(U2)–[R(ak8, ak8)+D(ak9, ak12)]=50-[10+7+10+9+8]=6         (8) 
If we consider another execution instance of Figure 2 where the execution goes 

Branch 1, but R(ak1)=11, R(ak2)=16, R(ak3)=8, R(ak4)=10, R(ak5)=6, R(ak7)=14 and 
R(ak8)=19, then at ak8, according to Definition 2, U1 and U2 are of WC. Correspondingly, 
we have WC time redundancies as shown in (9) and (10) below.  
TRWC(U1, ak8)=u(U1)–[R(ak1)+R(ak2)+R(ak3)+R(ak4)+R(ak5)+R(ak7)+R(ak8)+M(ak9, ak10)]= 

100-[11+16+8+10+6 +14+19+4+9]=3        (9) 
TRWC(U2, ak8)= u(U2)–[R(ak8, ak8)+M(ak9, ak12)]=50-[19+4+9+8+5]=5      (10) 

 
4.2 Minimum SC and WC Time Redundancy 

We now consider multiple SC or WC upper bound constraints that cover ap, i.e. ap is 
between the start activities and end activities of those upper bound constraints. Based on 
Definitions 3 and 4, we introduce minimum SC and WC time redundancy. 

Definition 5 (Minimum SC Time Redundancy). Let U1, U2, ... , UN be N SC upper 
bound constraints and all of them cover ap. Then, at ap, the minimum SC time 
redundancy is defined as the minimum one of all SC time redundancies of U1, U2, ... , UN, 
and is denoted as MTRSC(ap) (MTRSC: SC Minimum Time Redundancy): 

MTRSC(ap) = Min{ TRSC(Us, ap)| s =1,2, ..., N }. 
Definition 6 (Minimum WC Time Redundancy). Let U1, U2, ... , UN be N WC upper 

bound constraints and all of them cover ap. Then, at ap, the minimum WC time 
redundancy is defined as the minimum one of all WC time redundancies of U1, U2, ... , 
UN, and is denoted as MTRWC(ap) (MTRWC: WC Minimum Time Redundancy): 

MTRWC(ap) = Min{ TRWC(Us, ap)| s =1,2, ..., N }. 
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For example, we consider the two execution instances used in Section 4.1 again. For 
the execution instance where U1 and U2 are of SC, at ak8, we have (11) below. 

MTRSC(ak8)=Min{TRSC(U1, ak8), TRSC(U2, ak8)}=Min{19, 6}=6                (11) 
For the execution instance where U1 and U2 are of WC, we have (12) below. 

MTRWC(ak8)=Min{TRWC(U1, ak8), TRWC(U2, ak8)}=Min{3, 5}=3                (12) 
According to Definitions 5 and 6, at ap-1 or just before the execution of ap, the 

minimum SC and WC time redundancies are MTRSC(ap-1) and MTRWC(ap-1) respectively. 
In addition, we normally have M(ap) + MTRWC(ap-1) < D(ap) + MTRSC(ap-1). The 

reason is simple: if M(ap) + MTRWC(ap-1) ≥ D(ap) + MTRSC(ap-1), then, since the upper 
bound constraint of MTRSC(ap-1) is of SC, the upper bound constraint of MTRWC(ap-1) 
must also be of SC; but the upper bound constraint of MTRWC(ap-1) is actually of WC. 
 
4.3 Dynamic Obtaining of Minimum SC and WC Time Redundancy 

Along grid workflow execution, at ap, an intuitive method for obtaining MTRSC(ap) and 
MTRWC(ap) is to compute and compare all SC and WC time redundancies. However, this 
method is not efficient as it will cause too much extra computation. Hence, we develop a 
more efficient method and denote it as DOMTR (Dynamic Obtaining of Minimum Time 
Redundancy). We describe the detailed working process of DOMTR in Appendix A. 

In brief, from Appendix A, we can see that DOMTR works at run-time instantiation 
and execution stages. At run-time instantiation stage, DOMTR sets up some initial values. 
Then, at run-time execution stage, DOMTR keeps minimum SC and WC time 
redundancy along grid workflow execution. At each activity, DOMTR adjusts minimum 
SC and WC time redundancy in time according to the dynamic change of activity 
completion duration. As such, minimum SC and WC time redundancy can adapt to 
dynamics and uncertainty of run-time activity completion duration.  

Compared to the intuitive method, DOMTR involves far less extra computation. 
According to Appendix A, at run-time instantiation stage, DOMTR sets up some initial 
values by directly using the corresponding computation results from temporal verification. 
Since temporal verification must be conducted at run-time instantiation stage regardless 
whether or not we select some checkpoints for run-time execution stage verification, 
DOMTR does not incur any extra computation. At run-time execution stage, DOMTR 
computes minimum SC and WC time redundancy on the fly along grid workflow 
execution. Basically, the extra computation we need is one or two subtractions or 
comparisons at each activity covered by one or more upper bound constraints. This, 
according to Definition 2, is actually equivalent to the computation for one-time temporal 
verification of one upper bound constraint. Since we normally need to conduct temporal 
verification many times at various activities for many upper bound constraints [Chen and 
Yang 2005b; Marjanovic and Orlowska 1999; Zhuge et al. 2001], such one or two 
subtractions or comparisons would be negligible. 
 
5. CHECKPOINT SELECTION BASED ON MINIMUM SC AND WC TIME 
REDUNDANCY 

5.1 Relationships between Minimum SC & WC Time Redundancy and SC, WC, 
WI & SI 

At the run-time execution stage, at activity point ap, we discuss relationships between 
MTRSC(ap-1) & MTRWC(ap-1) and SC, WC, WI & SI. We first depict these relationships in 
Figure 5. 



 
 

Fig. 5. Relationships between minimum SC and WC time redundancy and SC, WC, WI & SI 
 

As shown in Figure 5, there are three relationships. We now further explain them. For 
this purpose, we draw three theorems: Theorems 1, 2 and 3. Theorem 1 is used to support 
the relationships where R(ap)>D(ap)+MTRSC(ap-1). Theorem 2 is used to support the 
relationships where M(ap) + MTRWC(ap-1) < R(ap) ≤ D(ap) + MTRSC(ap-1). And Theorem 3 
is used to support the relationships where R(ap) ≤ M(ap) + MTRWC(ap-1). 

Theorem 1. At activity point ap, if R(ap) > D(ap) + MTRSC(ap-1), then:  
1) all previous WC upper bound constraints now cannot be of SC and may be of 

WC, WI or SI;  
2) the previous SC upper bound constraint whose minimum SC time redundancy at 

ap-1 is MTRSC(ap-1) now cannot be of SC and may be of WC, WI or SI; and 
3) all other previous SC upper bound constraints may now be of SC, WC, WI or SI. 

Proof: 1) Suppose U(ak, al) is a previous WC upper bound constraint, i.e. it is of WC 
before execution of ap (k≤p≤l). Then, according to Definition 2, we have (13) below. 

u(ak, al) < R(ak, ap-1) + D(ap, al)                                             (13) 
Besides, since R(ap) > D(ap) + MTRSC(ap-1), D(ap) < R(ap). Together with (13), then u(ak, 
al) < R(ak, ap-1) + D(ap, al) = R(ak, ap-1)+ D(ap) + D(ap+1, al) < R(ak, ap-1) + R(ap) + 
D(ap+1, al) = R(ak, ap) + D(ap+1, al). Hence, we have (14) below. 

u(ak, al) < R(ak, ap) + D(ap+1, al)                                           (14) 
According to Definition 2, (14) means that U(ak, al) can not be of SC after execution of ap. 

In addition, since R(ap) > D(ap) + MTRSC(ap-1), R(ak, ap-1) + M(ap, al) = R(ak, ap-1) + 
M(ap) + M(ap+1, al) ≤ R(ak, ap-1) + D(ap) + M(ap+1, al) < R(ak, ap-1) + R(ap) - MTRSC(ap-

1)+M(ap+1, al)=R(ak, ap) + M(ap+1, al) - MTRSC(ap-1). Hence, we have (15) below. 
R(ak, ap-1) + M(ap, al) < R(ak, ap) + M(ap+1, al) - MTRSC(ap-1)               (15) 

Meanwhile, because U(ak, al) is previously of WC, according to Definition 2, we have 
(16) below. 

R(ak, ap-1) + M(ap, al) ≤  u(ak, al)                                       (16) 
However, (15) and (16) are insufficient to judge whether (17) below holds or not. 

R(ak, ap) + M(ap+1, al) ≤ u(ak, al)                                       (17) 
If (17) holds, U(ak, al) is of WC again. However, depending on specific MTRSC(ap-1), (17) 
may or may not hold. Similarly, we may or may not have R(ak, ap) + d(ap+1, al) ≤ u(ak, al) 
< R(ak, ap) + M(ap+1, al) and u(ak, al) < R(ak, ap) + d(ap+1, al). Therefore, according to 
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Definition 2, depending on specific MTRSC(ap-1), after execution of ap, U(ak, al) may be of 
WC, WI or SI. 

2) Suppose the previous SC upper bound constraint corresponding to MTRSC(ap-1) is 
U(ai, aj). Then, according to Definitions 3 and 5, we have (18) below.  

MTRSC(ap-1) = u(ai, aj) – [R(ai, ap-1) + D(ap, aj)]                        (18) 
Together with R(ap) > D(ap) + MTRSC(ap-1), then u(ai, aj) – [R(ai, ap-1) + D(ap, aj)] < R(ap) 
- D(ap), i.e. u(ai, aj) < R(ap) - D(ap) + [R(ai, ap-1) + D(ap, aj)] = R(ai, ap) + D(ap+1, aj). 
Hence, we have (19) below. 

u(ai, aj) < R(ai, ap) + D(ap+1, aj)                                       (19) 
According to Definition 2, (19) means that U(ai, aj) can not be of SC after execution of ap. 

In addition, Similar to 1), we can prove that depending on specific MTRSC(ap-1), U(ai, 
aj) may be of WC, WI or SI after execution of ap. 

3) Suppose U(ai, aj) is a previous SC upper bound constraint, i.e. it is of SC before 
execution of ap (i≤p≤j). We also suppose U(ai, aj) is not the one whose minimum SC time 
redundancy at ap-1 is MTRSC(ap-1). Then, according to Definitions 3 and 5, we have (20) 
below.  

MTRSC(ap-1) ≤ TRSC(U(ai, aj), ap)                                     (20)  
Together with R(ap) > D(ap) + MTRSC(ap-1), it is insufficient to decide whether TRSC(U(ai, 
aj), ap) + D(ap) < R(ap). If TRSC(U(ai, aj), ap) + D(ap) < R(ap), then, similar to 2), we can 
prove that U(ai, aj) cannot be of SC after execution of ap. But if R(ap) ≤ TRSC(U(ai, aj), ap) 
+ D(ap), then, similar to 1), we can prove that depending on specific TRSC(U(ai, aj), ap), 
after execution of ap, U(ai, aj) may be of SC, WC, WI or SI. 

Thus, in overall terms, the theorem holds. ▌ 
Theorem 2. At activity point ap, if M(ap)+MTRWC(ap-1) < R(ap) ≤ D(ap)+MTRSC(ap-1), 

then: 
1) all previous SC upper bound constraints are now still of SC;  
2) the previous WC upper bound constraint whose minimum WC time redundancy 

at ap-1 is MTRWC(ap-1) now cannot be of WC and SC, and may now be of WI or 
SI; and 

3) all other previous WC upper bound constraints may now be of SC, WC, WI or 
SI. 

Proof: 1) Suppose U(ai, aj) is of SC before execution of ap. According to Definition 2, 
we have (21) below. 

R(ai, ap-1) + D(ap, aj) ≤ u(ai, aj)                                     (21) 
Together with R(ap) ≤ D(ap) + MTRSC(ap-1), then R(ai, ap) + D(ap+1, aj) = R(ai, ap-1) + 
R(ap) + D(ap+1, aj) ≤ R(ai, ap-1) + MTRSC(ap-1) + D(ap) + D(ap+1, aj) = R(ai, ap-1) + 
MTRSC(ap-1) + D(ap, aj) ≤ R(ai, ap-1) + TRSC(U(ai, aj), ap-1) + D(ap, aj) = u(ai, aj). Hence, 
we have (22) below. 

R(ai, ap) + D(ap+1, aj) ≤ u(ai, aj)                                     (22) 
According to Definition 2, (22) means that U(ai, aj) is still of SC after execution of ap. 

2) The proof is similar to 2) of Theorem 1, hence omitted. 
3) The proof is similar to 3) of Theorem 1, hence omitted. 
Thus, in overall terms, the theorem holds. ▌ 
Theorem 3. At activity point ap, if R(ap) ≤ M(ap) + MTRWC(ap-1), then: 
1) all previous SC upper bound constraints are now still of SC;  
2) all previous WC upper bound constraints are now at least of WC and may be of 

SC; and 
3) if previous WC upper bound constraints are now still of WC, the status of them 

has been changed closer to SC. 
Proof: 1) The proof is similar to 1) of Theorem 2, hence omitted. 



 14

2) Suppose U(ak, al) is of WC before execution of ap. According to Definition 2, we 
have (23) below. 

R(ak, ap-1) + M(ap, al) ≤  u(ak, al) < R(ak, ap-1) + D(ap, al)           (23) 
Together with R(ap) ≤ MTRWC(ap-1) + M(ap), then R(ak, ap) + M(ap+1, al) = R(ak, ap-1) + 
R(ap) + M(ap+1, al) ≤ R(ak, ap-1) + MTRWC(ap-1) + M(ap) + M(ap+1, al) = R(ak, ap-1) + 
MTRWC(ap-1) + M(ap, al) ≤ R(ak, ap-1) + TRWC(U(ak, al), ap-1) + M(ap, al) = u(ak, al). Hence, 
we have (24) below. 

R(ak, ap) + M(ap+1, al) ≤ u(ak, al)                                          (24) 
In addition, R(ak, ap) + D(ap+1, al) = R(ak, ap-1) + R(ap) + D(ap+1, al) ≤ R(ak, ap-1) + 
MTRWC(ap-1) + M(ap) + D(ap+1, al) ≤ R(ak, ap-1) + MTRWC(ap-1) + D(ap) + D(ap+1, al) = 
R(ak, ap-1) + MTRWC(ap-1) + D(ap, al). Hence, we have (25) below. 

R(ak, ap) + D(ap+1, al) ≤ R(ak, ap-1) + MTRWC(ap-1) + D(ap, al)                  (25) 
However, (24) and (25) are insufficient to judge whether (26) below holds or not. 

u(ak, al) < R(ak, ap) + D(ap+1, al)                                             (26) 
In fact, depending on specific MTRWC(ap-1), (26) may or may not hold. If (26) holds, then, 
with (24), we have (27) below. 

R(ak, ap) + M(ap+1, al) ≤ u(ak, al) < R(ak, ap) + D(ap+1, al)            (27) 
According to Definition 2, (27) means that U(ak, al) is of WC. If (26) does not hold, 
according to Definition 2, U(ak, al) already switches to SC after execution of ap. 

3) If R(ap) ≤ MTRWC(ap-1) + M(ap), then we have (28) below. 
R(ap) ≤ TRWC(U(ak, al), ap-1) + M(ap)                                      (28) 

With (28), then R(ak, ap) + M(ap+1, al) = R(ak, ap-1) + R(ap) + M(ap+1, al) ≤ R(ak, ap-1) + 
TRWC(U(ak, al), ap-1) + M(ap) + M(ap+1, al) = R(ak, ap-1) + TRWC(U(ak, al), ap-1) + M(ap, al). 
Therefore, we have (29) below. 

R(ak, ap) + M(ap+1, al) ≤ R(ak, ap-1) + M(ap, al) + TRWC(U(ak, al), ap-1)     (29) 
Based on (29), we have (30) below. 

u(ak, al)–[R(ak, ap-1)+M(ap, al)+TRWC(U(ak, al), ap-1]≤u(ak, al)– [R(ak, ap)+M(ap+1, al)]    
(30) 

(30) means that after execution of ap, U(ak, al) is closer to SC than before. 
Thus, in overall terms, the theorem holds. ▌ 
 

5.2 Checkpoint Selection along Grid Workflow Execution 

According to Figure 5 and Section 5.1, at ap, we can draw the following three conclusions: 
1. If R(ap) > D(ap)+MTRSC(ap-1), we have to verify all previous SC and WC upper 

bound constraints. There is at least one previous SC upper bound constraint which is 
violated and now is not of SC. It is exactly the one whose SC time redundancy at ap-1 
is MTRSC(ap-1) 

2. If M(ap) + MTRWC(ap-1) < R(ap) ≤ D(ap) + MTRSC(ap-1), we need not verify all 
previous SC upper bound constraints, only all previous WC ones. And there is at 
least one previous WC upper bound constraint which is violated and now is not of 
SC and WC. It is exactly the one whose WC time redundancy at ap-1 is MTRWC(ap-1).  

3. If R(ap) ≤ M(ap) + MTRWC(ap-1), we need not verify all previous SC upper bound 
constraints. As to previous WC ones, we borrow some conclusions from [Chen and 
Yang 2005b] and we need not verify them either. In [Chen and Yang 2005b], we 
already developed a method to adjust WC upper bound constraints so that they can 
still be kept as SC. According to Theorem 3, after the execution of ap, the status of 
previous WC upper bound constraints has been changed closer to SC (can even be 
changed to SC). Therefore, if a previous WC upper bound constraint is still of WC 
after execution of ap, the previous adjustment can still be carried forward. Hence, we 
need not do anything further to it. That is to say, we need not verify it. 
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Based on the above three conclusions, we can decide whether we should take ap as a 
checkpoint when grid workflow execution arrives at ap. The decision-making approach is 
denoted as CDA (Checkpoint Decision-making Approach). The judgement process of 
CDA at ap is described below.  

At activity ap, if R(ap)>D(ap)+MTRSC(ap-1), we select it as a checkpoint for verifying 
SC, WC, WI & SI of all previous SC upper bound constraints, and for verifying WC, WI 
& SI of all previous WC upper bound constraints.  

If M(ap)+MTRWC(ap-1)<R(ap)≤D(ap)+MTRSC(ap-1), we select ap as a checkpoint for 
verifying SC, WC, WI & SI of all previous WC only upper bound constraints.  

If R(ap)≤M(ap)+MTRWC(ap-1), we do not select ap as a checkpoint. 
We now illustrate the correctness of CDA. We continue to consider the two 

execution instances used in Section 4.1. For the execution instance where U1 and U2 are 
of SC at ak8, we suppose R(ak9)=14. Then at ak9, we have (31) below. 

D(ak9)+MTRSC(ak8)=7+6=13                                           (31) 
Apparently, we have (32) below. 

R(ak9)>D(ak9)+MTRSC(ak8)                                             (32) 
According to CDA, this inequation means that ak9 is selected as a checkpoint. In fact, we 
have (33) below.  

R(ak8)+R(ak9)+D(ak10)+D(ak11)+D(ak12)=10+14+10+9+8=51          (33) 
Since u(U2)=50, we then have (34) below. 

R(ak8)+R(ak9)+D(ak10)+D(ak11)+D(ak12)>u(U2)                       (34) 
According to Definition 2, the inequation means that U2 is not of SC, i.e., it is violated. 
Hence, we do need to select ak9 as a checkpoint so that we can identify the violation. 
With another execution instance where U1 and U2 are of WC at ak8, we can similarly 
demonstrate: if M(ap)+MTRWC(ap-1)<R(ap)≤D(ap)+MTRSC(ap-1), we do need to select ap 
as a checkpoint; and if R(ap) ≤ M(ap) + MTRWC(ap-1), we need not take ap as a checkpoint. 
In overall term, CDA is correct. 

Combining CDA with DOMTR from Section 4.3 and Appendix A, we can derive a 
novel checkpoint selection strategy that adaptively selects not only necessary but also 
sufficient checkpoints dynamically along grid workflow execution. We denote the 
strategy as CSSMTR (CSSMTR: Minimum Time Redundancy based Checkpoint Selection 
Strategy). The overall selection process of CSSMTR is:  

Along grid workflow execution, CSSMTR calls DOMTR to compute minimum SC 
and WC time redundancy of each activity. Then when grid workflow execution 
arrives at an activity, say ap, CSSMTR calls CDA to decide whether ap should be taken 
as a checkpoint.  

The overall structure of CSSMTR is depicted in Algorithm 1 below. Algorithm 1 is 
based on DOMTR. Since DOMTR is already described in detail in Appendix A, we do 
not repeat the details of DOMTR here. This means DOMTR is needed together to 
understand Algorithm 1.  
 

Input Maximum, minimum and mean durations of all activities; all SC and 
WC upper bound constraints. 

Output True or False as an appropriate checkpoint. 
Step 1 At run-time instantiation stage, conduct DOMTR (refer to Appendix A) 

to set up some initial values. Initially, there are no any predefined 
checkpoints. 

1.1. Execute Steps 1 and 2 of DOMTR to obtain all SMTDSC-init and SMTDWC-init. 
1.2. Execute Step 3 of DOMTR to obtain EMTDSC-init and EMTDWC-init for every 

end activity of each SC or WC upper bound constraint. 
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1.3. Execute Step 4 of DOMTR to set the biggest possible float number of the 
system to MTRSC  and MTRWC of each activity that is not covered by any SC or 
WC upper bound constraints. 

Step 2 At run-time execution stage, conduct DOMTR (refer to Appendix A) to 
obtain MTRSC(ap-1) and MTRWC(ap-1) when grid workflow execution 
arrives at ap-1.  

2.1. If ap-1 is a start activity of some SC and/or WC upper bound constraints, 
execute Step 5 of DOMTR including Steps 5.1, 5.2 and 5.3 to obtain 
MTRSC(ap-1) and MTRWC(ap-1). 

2.2. If ap-1 is an intermediate activity of some SC and/or WC upper bound 
constraints, execute Step 6 of DOMTR to obtain MTRSC(ap-1) and MTRWC(ap-1). 

2.3. If ap-1 is an end activity of some SC and/or WC upper bound constraints, 
execute Step 7 of DOMTR including Steps 7.1, 7.2, 7.2.1, 7.2.2 to obtain 
MTRSC(ap-1) and MTRWC(ap-1). 

2.4. If ap-1 is not covered by any SC or WC upper bound constraints, execute Step 8 
of DOMTR to obtain MTRSC(ap-1) and MTRWC(ap-1). 

Step 3 At run-time execution stage, call CDA(ap) to decide whether ap should 
be selected as an appropriate checkpoint when grid workflow execution 
arrives at ap. 

3.1. Call CDA to compare D(ap) + MTRSC(ap-1) and  M(ap) + MTRWC(ap-1) with 
R(ap) so that we can decide whether ap should be selected as an appropriate 
checkpoint.  

 
Algorithm 1. Checkpoint selection process of CSSMTR

 
5.3 Necessity and Sufficiency of CSSMTR

We now further prove that checkpoints selected by CSSMTR adaptively along grid 
workflow execution are both necessary and sufficient for temporal verification. 

Theorem 4 (Necessity). Along grid workflow execution, all checkpoints selected by 
CSSMTR are necessary, i.e. there are no any unnecessary checkpoints. 

Proof: According to Figure 5 and the three conclusions in Section 5.2, we can see 
that once we take an activity, say ap, as a checkpoint, there must be at least one WC or 
SC upper bound constraint which will be violated. It is exactly the one whose minimum 
WC or SC time redundancy at ap-1 is MTRWC(ap-1) or MTRSC(ap-1). That is to say, selecting 
ap as a checkpoint is necessary.  

Thus, the theorem holds. ▌ 
Theorem 5 (Sufficiency). Along grid workflow execution, the checkpoints selected 

by CSSMTR are sufficient, i.e. there are no any omitted checkpoints. 
Proof: With CSSMTR, at ap, we consider whether we should take it as a checkpoint 

only if M(ap) + MTRWC(ap-1) < R(ap). In fact, according to the discussion in Sections 5.1 
and 5.2, we need not take ap as a checkpoint if M(ap) + MTRWC(ap-1) ≥ R(ap). Therefore, 
the checkpoints selected by CSSMTR are sufficient, i.e. none are omitted.  

Thus, the theorem holds. ▌ 
 

6. SIMULATION AND COMPARISON 

In Section 3, we have analysed the problem of CSS1~CSS7 on checkpoint selection. That 
is: CSS1 and CSS2 may select some unnecessary checkpoints although they do not omit 
any necessary ones; CSS3 and CSS4 may select some unnecessary checkpoints and omit 



some necessary ones; and CSS5, CSS6 and CSS7 may select some unnecessary checkpoints 
without omitting any necessary ones. In Section 5.3, we have rigorously proved the 
necessity and sufficiency of our strategy CSSMTR. Therefore, CSSMTR is apparently better 
than CSS1~CSS7. 

We now perform a simulation experiment in our grid workflow management system 
called SwinDeW-G (Swinburne Decentralised Workflow for Grid) [SwinDeW-G 2007; 
Yan et al. 2006]. In general, on one hand, the simulation experiment simulates the 
execution of CSS1~CSS7 & CSSMTR and finds out their respective checkpoints along grid 
workflow execution. On the other hand, it conducts temporal verification at each activity 
to check out the real necessary and sufficient checkpoints. Then, by comparing the 
checkpoints selected by CSS1~CSS7 and CSSMTR with those by the temporal verification, 
the simulation experiment demonstrates two results: (1) the necessity and sufficiency of 
CSSMTR and (2) the significant improvement of CSSMTR on checkpoint selection over 
CSS1~CSS7.  

In Section 6.1, we describe the simulation environment. We then detail the simulation 
process of CSS1~CSS7 and CSSMTR in Section 6.2. In Section 6.3, we depict and analyse 
the simulation outcomes to demonstrate that the above two results are achieved.  

 
6.1 Simulation Environment 

The key component in our simulation environment is SwinDeW-G which is running on a 
grid testbed [SwinDeW-G 2007]. An overall picture of the testbed is depicted in the 
bottom plane of Figure 6 which contains many grid nodes distributed in different places. 
Each grid node contains many computers including high performance PCs and/or 
supercomputers composed of many computing units. The primary hosting nodes include 
the Swinburne CITR (Centre for Information Technology Research) Node, Swinburne 
ESR (Enterprise Systems Research laboratory) Node, Swinburne Astrophysics 
Supercomputer Node, and Beihang CROWN Node in China. They are running Linux, GT 
(Globus Toolkit) 4.03 or CROWN grid toolkits 2.5 [CROWN 2006, SwinDeW-G 2007] 
where CROWN (China R&D Environment Over Wide-area Network) is an extension of 
GT4.03 with more middleware, hence compatible with GT4.03. Besides, the CROWN 
Node is also connected to some other nodes such as those in Hong Kong University of 
Science and Technology, and University of Leeds in UK. The Swinburne Astrophysics 
Supercomputer Node is cooperating with APAC (Australian Partnership for Advanced 
Computing) and VPAC (Victorian Partnership for Advanced Computing).  
 

 
 

Fig. 6. Overview of the Simulation Environment 
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Currently, SwinDeW-G is deployed at all primary hosting nodes. SwinDeW-G is a 
peer-to-peer based grid workflow management system [SwinDeW-G 2007]. A grid 
workflow is executed by different peers that can be distributed at different grid nodes. 
Different peers communicate with each other directly in a peer-to-peer fashion. As shown 
in the bottom plane of Figure 6, each grid node can have a number of peers. A peer can 
be simply viewed as a grid service [SwinDeW-G 2007]. In the top plane of Figure 6, we 
show a sample of how a grid workflow can be executed in the simulation environment.  
 
6.2 Simulation Process 

We have simulated CSS1~CSS7 and CSSMTR on the climate modelling grid workflow 
execution intensively with different numbers of activities and sub-activities. The 
simulation process is detailed below. 

The whole simulation process consists of two independent sub-processes on the fly 
with grid workflow execution. One is a checkpoint selection process during which 
CSS1~CSS7 and CSSMTR are executed to identify which activities are selected as 
checkpoints by each of them. That is to say, the checkpoint selection rules of CSS1~CSS7 
described in Section 3 and those of CSSMTR described in Section 5 are performed. The 
other is a verification process during which all upper bound constraints are verified 
according to Definition 2 at each activity to check out whether the activity must be 
selected as a checkpoint. Only those activities where one or more upper bound constraints 
are violated should be selected as checkpoints so that we can identify and handle the 
violation in time. Accordingly, the checkpoints identified by the verification process are 
necessary and sufficient. The two sub-processes are independent of each other and are 
executed in parallel. Hence, we can compare them with each other in order to derive 
unnecessary and omitted checkpoints of each strategy.  

For example, we consider one of the strategies, say CSS3. Suppose the grid workflow 
execution now arrives at activity ai, say an activity for computing the impact of local 
thunderstorms on overall climate. After ai, the factor of local thunderstorms is taken into 
consideration for the overall climate modelling. Then, at ai, on one hand, the checkpoint 
selection process is executed. Namely, the checkpoint selection rules of CSS3 described in 
Section 3 are performed to identify whether ai is selected as a checkpoint by it. This is the 
checkpoint selection result of CSS3 at ai. On the other hand, the verification process is 
executed. Namely, all upper bound constraints which cover ai are verified according to 
Definition 2. If there are any upper bound constraints violated, i.e. not of SC and WC, 
then ai must be selected as a checkpoint. Otherwise, it should not be selected as a 
checkpoint. This is the verification result at ai and is independent of the checkpoint 
selection result of CSS3 at ai. After this, the two results are compared. There are four 
possible mapping cases between them. 

1) Case 1: ai is selected as a checkpoint by CSS3, but the verification result 
indicates it should not be selected as a checkpoint. This means that CSS3 
selected one more unnecessary checkpoint.  

2) Case 2: ai is selected as a checkpoint by CSS3, and the verification result also 
indicates it must be selected as a checkpoint. This means that CSS3 did the right 
thing on checkpoint selection.  

3) Case 3: ai is not selected as a checkpoint by CSS3, but the verification result 
indicates it must be selected as a checkpoint. This means that CSS3 omitted one 
more necessary checkpoint.  

4) Case 4: ai is not selected as a checkpoint by CSS3, and the verification result 
indicates it should not be selected as a checkpoint either. This means that CSS3 
did the right thing on checkpoint selection. 

 



6.3 Simulation Results and Analysis 

Based on the above simulation process, we can identify how many unnecessary 
checkpoints selected by CSS1~CSS7 and CSSMTR, and how many omitted checkpoints by 
CSS1~CSS7 and CSSMTR for each time grid workflow execution. Such results, together 
with corresponding trajectories, are depicted in Figures 7 and 8 respectively. They change 
by the number of total grid workflow activities. 
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Fig. 7. Unnecessary checkpoints selected by each strategy 
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Fig. 8. Omitted checkpoints by each strategy 
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From Figures 7 and 8, we can see that CSSMTR neither selects any unnecessary 
checkpoints nor omits any necessary ones. Accordingly, this has further demonstrated the 
necessity and sufficiency of CSSMTR, i.e. Theorems 4 and 5 derived in Section 5.3.  

In addition, from Figure 7, we can see that CSS1~CSS7 select some unnecessary 
checkpoints. In particular, when the grid workflow size is getting larger, i.e. there are 
more stages with more sequential and concurrent activities, the number of unnecessary 
checkpoints is also getting much bigger. Since real-world grid workflows are normally 
very complicated and may contain hundreds of thousands of sequential activities 
[Abramson et al. 2004; Deelman et al. 2003; Simpson et al. 2004], the size of a real-
world grid workflow is normally very large indeed. Thus, CSS1~CSS7 often select a big 
number of unnecessary checkpoints rather than only a few. As such, comparing with 
CSSMTR which does not select any unnecessary checkpoints, we can conclude that the 
improvement of CSSMTR on unnecessary checkpoint selection over CSS1~CSS7 can be 
very significant.  

From Figure 8, we can see that CSS3 and CSS4 omit some necessary checkpoints 
although CSS1, CSS2, CSS5, CSS6 and CSS7 do not omit any. In particular, when the size 
of a grid workflow is getting larger, i.e. there are more stages with more sequential and 
concurrent activities, the number of omitted checkpoints is getting much bigger. 
Similarly to the above analysis of Figure 7, the size of a real-world grid workflow is 
normally very large indeed. Thus, CSS3 and CSS4 often omit a big number of necessary 
checkpoints rather than only a few. As such, comparing with CSSMTR which does not omit 
any necessary checkpoints, we can conclude that the improvement of CSSMTR on omitted 
checkpoint selection over CSS3 and CSS4 can also be very significant. 

In overall terms, the simulation results have demonstrated the necessity and 
sufficiency of CSSMTR, and its significant improvement on checkpoint selection over 
CSS1~CSS7. 
 
7. CONCLUSIONS AND FUTURE WORK 

In grid workflow systems, to verify temporal constraints efficiently at run-time execution 
stage, checkpoints are often selected so that temporal verification is conducted only at 
such checkpoints rather than at all activity points. However, this is a complex issue and 
existing representative checkpoint selection strategies often select some unnecessary 
checkpoints and omit some necessary ones as they cannot adapt to dynamics and 
uncertainty of run-time activity completion duration. To overcome such limitations, in 
this paper, we have proposed a novel checkpoint selection strategy, named CSSMTR 
(Minimum Time Redundancy based Checkpoint Selection Strategy), which adaptively 
selects only necessary and sufficient checkpoints along grid workflow execution. 
Specifically, a new concept of minimum time redundancy has been introduced with a 
method named DOMTR (Dynamic Obtaining of Minimum Time Redundancy) on how to 
dynamically obtain minimum time redundancy along grid workflow execution. DOMTR 
obtains minimum time redundancy on the fly from run-time activity completion duration. 
Accordingly, minimum time redundancy can adapt to dynamics and uncertainty of run-
time activity completion duration. Minimum time redundancy has been used to serve as a 
key reference parameter for CSSMTR to select checkpoints. Then, relationships between 
minimum time redundancy and temporal consistency have been investigated in depth. 
Based on DOMTR and the relationships, CSSMTR has been developed with its necessity 
and sufficiency rigidly proved. The simulation has further experimentally demonstrated 
its necessity and sufficiency and its significant improvement on checkpoint selection over 
other representative strategies. 
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With these contributions, we can further investigate issues such as temporal exception 
handling when a temporal constraint is violated at a checkpoint. This could include 
dynamic negotiations between different grid services to compensate for the time deficit. 
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APPENDIX A. WORKING STEPS OF DOMTR 

To get a clear picture about the DOMTR working process intuitively, we depict a sample 
DOMTR working process in Figure 9 for obtaining MTRSC at run-time execution stage. 



 
 

Fig. 9. Sample DOMTR process for obtaining MTRSC at run-time execution stage 
 

Based on Figure 9, we now list the working steps of DOMTR in detail. Due to the 
space limit, we omit corresponding reasoning about them. Nevertheless, following the 
steps below, it will not be difficult for readers to understand the rationale as the steps are 
relatively straightforward. 

At run-time instantiation stage (setting up some initial values). 
Step 1. During the temporal verification process, for each SC upper bound constraint, 

say U(ai, aj), compute a time difference u(ai, aj) - D(ai, aj), denoted as SC time difference. 
For each WC upper bound constraint, say U(ak, al), compute another time difference u(ak, 
al) - M(ak, al), denoted as WC time difference. All such time differences can be obtained 
by using corresponding computation results from temporal verification. 

Step 2. At every start activity of each SC upper bound constraint, derive minimum SC 
time difference. For example, at ai of SC U(ai, aj), compare all SC time differences of all 
SC upper bound constraints that cover ai to derive the minimum one. Denote it as 
SMTDSC-init(ai) (SMTD: Minimum Time Difference at Start activity; init: initial). At every 
start activity of each WC upper bound constraint, derive minimum WC time difference. 
For example, at ak of WC U(ak, al), compare all WC time differences of all WC upper 
bound constraints that cover ak to derive the minimum one. Denote it as SMTDWC-init(ak). 

Step 3. At every end activity of each SC upper bound constraint, derive another 
minimum SC time difference. But this one is different from the one mentioned in Step 2. 
For example, at aj of SC U(ai, aj), compare all SC time differences of those SC upper 
bound constraints which cover aj, but do not end at aj. Denote the minimum one as 
EMTDSC-init(aj) (EMTD: Minimum Time Difference at End activity; init: initial). At every 
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end activity of each WC upper bound constraint, derive another minimum WC time 
difference. For example, at al of WC U(ak, al), compare all WC time differences of all 
WC upper bound constraints which cover al, but do not end at al. Denote the minimum 
one as EMTDWC-init(al). 

Step 4. For each activity, say ar, which is not covered by any SC or WC upper bound 
constraints, set MTRSC(ar) and MTRWC(ar) to the biggest possible float number of the 
system (denoted as BFN) which is far bigger than any SMTDSC-init and SMTDWC-init. 

At run-time execution stage (computing MTRSC and MTRWC). 
Step 5. Along grid workflow execution, suppose now the execution arrives at a start 

activity of some SC and/or WC upper bound constraints, say ai. There are three situations. 
The first one is that ai is the start activity of some SC and WC upper bound constraints. 
The second one is that ai is the start activity of some SC upper bound constraints only. 
The third one is that ai is the start activity of some WC upper bound constraints only. 

Step 5.1. For the first situation, for MTRSC(ai), if SMTDSC-init(ai) < MTRSC(ai-1), then, 
MTRSC(ai) = SMTDSC-init(ai)–[R(ai)-D(ai)]. Otherwise, MTRSC(ai)=MTRSC(ai-1)–[R(ai) - 
D(ai)]. For MTRWC(ai), if SMTDWC-init(ai) < MTRWC(ai-1), MTRWC(ai) = SMTDWC-init(ai) – 
[R(ai) - M(ai)]. Otherwise, MTRWC(ai) = MTRWC(ai-1) – [R(ai) - M(ai)]. 

Step 5.2. For the second situation, for MTRSC(ai), if SMTDSC-init(ai) < MTRSC(ai-1), 
then, MTRSC(ai) = SMTDSC-init(ai) – [R(ai) - D(ai)]. Otherwise, MTRSC(ai) = MTRSC(ai-1) – 
[R(ai) - D(ai)]. For MTRWC(ai), if MTRWC(ai-1) = BFN, MTRWC(ai) = BFN. Otherwise, 
MTRWC(ai) = MTRWC(ai-1) - [R(ai) - M(ai)].  

Step 5.3. For the third situation, for MTRSC(ai), if MTRSC(ai-1) = BFN, MTRSC(ai) = 
BFN. Otherwise, MTRSC(ai) = MTRSC(ai-1) - [R(ai) - D(ai)]. For MTRWC(ai), if SMTDWC-

init(ai) < MTRWC(ai-1), MTRWC(ai) = SMTDWC-init(ai) – [R(ai) - M(ai)]. Otherwise, MTRWC(ai) 
= MTRWC(ai-1) – [R(ai) - M(ai)]. 

Step 6. Along grid workflow execution, suppose now the execution arrives at an 
activity, say ap. ap is covered by some SC or WC upper bound constraints, but is neither a 
start activity nor an end activity of any SC or WC upper bound constraints. After the 
execution of ap, MTRSC(ap) = MTRSC(ap-1) – [R(ap) - D(ap)] and MTRWC(ap) = MTRWC(ap-1) 
– [R(ap) - M(ap)]. 

Step 7. Along grid workflow execution, we now discuss how to obtain new MTRSC 
and MTRWC when grid workflow execution arrives at the end activity of some SC and/or 
WC upper bound constraints. We discuss how to obtain new MTRSC only. For new 
MTRWC, the corresponding discussion is similar. Suppose now grid workflow execution 
arrives at the end activity aj of some SC upper bound constraints. Denote the SC upper 
bound constraint corresponding to MTRSC(aj-1) as U(MTRSC(aj-1)).  

Step 7.1. If aj is not the end activity of U(MTRSC(aj-1)), obtain MTRSC(aj) according to 
Step 6 as U(MTRSC(aj-1)) is still functioning.  

Step 7.2. If aj is the end activity of U(MTRSC(aj-1)), then, MTRSC(aj) can also be 
obtained according to Step 6. However, such MTRSC(aj) cannot be used further after the 
execution of aj because U(MTRSC(aj-1)) will be finished. For example, we cannot compute 
MTRSC(aj+1) based on such MTRSC(aj). Therefore, after the execution of aj, we need to 
compute new MTRSC(aj) to replace such MTRSC(aj). The new MTRSC(aj) depends on two 
situations. The first one is when there are no any other SC upper bound constraints which 
cover aj but do not end at aj. The second one is when there are some other SC upper 
bound constraints which cover aj but do not end at aj.  

Step 7.2.1. For the first situation, the new MTRSC(aj) is set to BFN.   
Step 7.2.2. For the second situation, suppose that the upper bound constraint 

corresponding to EMTDSC-init(aj) is U(am, an) (m≤j<n). Then, the new MTRSC(aj) = 

EMTDSC-init(aj) – .  )]()([ s

j
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Step 8. When grid workflow execution arrives at an activity which is not covered by 
any SC or WC upper bound constraints, do nothing and simply keep the initial values set 
by Step 4.  

Step 9. Along grid workflow execution, repeat all or some of Steps 5, 6, 7 and 8 when 
applicable. 


	If ap-1 is a start activity of some SC and/or WC upper bound
	If ap-1 is an intermediate activity of some SC and/or WC upp
	If ap-1 is an end activity of some SC and/or WC upper bound 
	If ap-1 is not covered by any SC or WC upper bound constrain
	Call CDA to compare D(ap) + MTRSC(ap-1) and  M(ap) + MTRWC(a

