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A Privacy Leakage Upper-bound Constraint 
based Approach for Cost-effective Privacy 

Preserving of Intermediate Datasets in Cloud 
Xuyun Zhang, Chang Liu, Surya Nepal, Suraj Pandey, Jinjun Chen, Member, IEEE 

Abstract—Cloud computing provides massive computation power and storage capacity which enable users to deploy 
computation and data intensive applications without infrastructure investment. Along the processing of such applications, a large 
volume of intermediate datasets will be generated, and often stored to save the cost of re-computing them. However, preserving 
the privacy of intermediate datasets becomes a challenging problem because adversaries may recover privacy-sensitive 
information by analyzing multiple intermediate datasets. Encrypting ALL datasets in cloud is widely adopted in existing 
approaches to address this challenge. But we argue that encrypting all intermediate datasets are neither efficient nor cost-
effective because it is very time consuming and costly for data-intensive applications to en/decrypt datasets frequently while 
performing any operation on them. In this paper, we propose a novel upper-bound privacy leakage constraint based approach to 
identify which intermediate datasets need to be encrypted and which do not, so that privacy-preserving cost can be saved while 
the privacy requirements of data holders can still be satisfied. Evaluation results demonstrate that the privacy-preserving cost of 
intermediate datasets can be significantly reduced with our approach over existing ones where all datasets are encrypted. 

Index Terms—Cloud Computing, Data Storage Privacy, Privacy Preserving, Intermediate Dataset, Privacy Upper Bound 

——————————      —————————— 

1    INTRODUCTION 
ECHNICALLY, cloud computing is regarded as an 
ingenious combination of a series of technologies, 
establishing a novel business model by offering IT 

services and using economies of scale [1], [2]. Participants 
in the business chain of cloud computing can benefit from 
this novel model. Cloud customers can save huge capital 
investment of IT infrastructure, and concentrate on their 
own core business [3]. Therefore, many companies or or-
ganizations have been migrating or building their busi-
ness into cloud. However, numerous potential customers 
are still hesitant to take advantage of cloud due to securi-
ty and privacy concerns [4], [5].  

The privacy concerns caused by retaining intermediate 
datasets in cloud are important but they are paid little 
attention. Storage and computation services in cloud are 
equivalent from an economical perspective because they 
are charged in proportion to their usage [1]. Thus, cloud 
users can store valuable intermediate datasets selectively 
when processing original datasets in data-intensive appli-
cations like medical diagnosis, in order to curtail the 
overall expenses by avoiding frequent re-computation to 
obtain these datasets [6], [7]. Such scenarios are quite 
common because data users often re-analyze results, con-
duct new analysis on intermediate datasets, or share some 
intermediate results with others for collaboration. With-

out loss of generality, the notion of intermediate dataset 
herein refers to intermediate and resultant datasets [6].  
However, the storage of intermediate data enlarges attack 
surfaces so that privacy requirements of data holders are 
at risk of being violated. Usually, intermediate datasets in 
cloud are accessed and processed by multiple parties, but 
rarely controlled by original dataset holders. This enables 
an adversary to collect intermediate datasets together and 
menace privacy-sensitive information from them, bring-
ing considerable economic loss or severe social reputation 
impairment to data owners. But little attention has been 
paid to such a cloud-specific privacy issue.  

Existing technical approaches for preserving the priva-
cy of datasets stored in cloud mainly include encryption 
and anonymization. On one hand, encrypting all datasets, 
a straightforward and effective approach, is widely 
adopted in current research [8], [9], [10]. However, 
processing on encrypted datasets efficiently is quite a 
challenging task, because most existing applications only 
run on unencrypted datasets. Although recent progress 
has been made in homomorphic encryption which theo-
retically allows performing computation on encrypted 
datasets, applying current algorithms are rather expen-
sive due to their inefficiency [11]. On the other hand, par-
tial information of datasets, e.g., aggregate information, is 
required to expose to data users in most cloud applica-
tions like data mining and analytics. In such cases, data-
sets are anonymized rather than encrypted to ensure both 
data utility and privacy preserving. Current privacy-
preserving techniques like generalization [12] can with-
stand most privacy attacks on one single dataset, while 
preserving privacy for multiple datasets is still a challeng-
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ing problem [13]. Thus, for preserving privacy of multiple 
datasets, it is promising to anonymize all datasets first 
and then encrypt them before storing or sharing them in 
cloud. Usually, the volume of intermediate datasets is 
huge [6]. Hence, we argue that encrypting all interme-
diate datasets will lead to high overhead and low efficien-
cy when they are frequently accessed or processed. As 
such, we propose to encrypt part of intermediate datasets 
rather than all for reducing privacy-preserving cost.  

In this paper, we propose a novel approach to identify 
which intermediate datasets need to be encrypted while 
others do not, in order to satisfy privacy requirements 
given by data holders. A tree structure is modeled from 
generation relationships of intermediate datasets to ana-
lyze privacy propagation of datasets. As quantifying joint 
privacy leakage of multiple datasets efficiently is chal-
lenging, we exploit an upper-bound constraint to confine 
privacy disclosure. Based on such a constraint, we model 
the problem of saving privacy-preserving cost as a con-
strained optimization problem. This problem is then di-
vided into a series of sub-problems by decomposing pri-
vacy leakage constraints. Finally, we design a practical 
heuristic algorithm accordingly to identify the datasets 
that need to be encrypted. Experimental results on real-
world and extensive datasets demonstrate that privacy-
preserving cost of intermediate datasets can be signifi-
cantly reduced with our approach over existing ones 
where all datasets are encrypted.  

The major contributions of our research are threefold. 
Firstly, we formally demonstrate the possibility of ensur-
ing privacy leakage requirements without encrypting all 
intermediate datasets when encryption is incorporated 
with anonymization to preserve privacy. Secondly, we 
design a practical heuristic algorithm to identify which 
datasets need to be encrypted for preserving privacy 
while the rest of them do not. Thirdly, experiment results 
demonstrate that our approach can significantly reduce 
privacy-preserving cost over existing approaches, which 
is quite beneficial for the cloud users who utilize cloud 
services in a pay-as-you-go fashion. 

This paper is a significantly improved version of [14]. 
Based on [14], we mathematically prove that our ap-
proach can ensure privacy-preserving requirements. Fur-
ther, the heuristic algorithm is re-designed by considering 
more factors. We extend experiments over real datasets. 
Our approach is also extended to a graph structure. 

The remainder of this paper is organized as follows. 
The related work is reviewed in the next section. A moti-
vating example and problem analysis are given in Section 
3. In Section 4, we present the fundamental privacy repre-
sentation of datasets and derive privacy leakage upper-
bound constraints. Section 5 formulates our approach. In 
Section 6, we evaluate the proposed approach by con-
ducting experiments on both real-world datasets and ex-
tensive datasets. Finally, we conclude this paper and dis-
cuss our future work in Section 7. 

2 RELATED WORK 
We briefly review the research on privacy protection in 

cloud, intermediate dataset privacy preserving and Priva-
cy-Preserving Data Publishing (PPDP). 

Currently, encryption is exploited by most existing re-
search to ensure the data privacy in cloud [8], [9], [10]. 
Although encryption works well for data privacy in these 
approaches, it is necessary to encrypt and decrypt data-
sets frequently in many applications. Encryption is usual-
ly integrated with other methods to achieve cost reduc-
tion, high data usability and privacy protection. Roy et al. 
[15] investigated the data privacy problem caused by 
MapReduce and presented a system named Airavat which 
incorporates mandatory access control with differential 
privacy. Puttaswamy et al. [16] described a set of tools 
called Silverline that identifies all functionally encryptable 
data and then encrypts them to protect privacy. Zhang et 
al. [17] proposed a system named Sedic which partitions 
MapReduce computing jobs in terms of the security labels 
of data they work on and then assigns the computation 
without sensitive data to a public cloud. The sensitivity of 
data is required to be labeled in advance to make the 
above approaches available. Ciriani et al. [18] proposed 
an approach that combines encryption and data fragmen-
tation to achieve privacy protection for distributed data 
storage with encrypting only part of datasets. We follow 
this line, but integrate data anonymization and encryp-
tion together to fulfill cost-effective privacy preserving. 

The importance of retaining intermediate datasets in 
cloud has been widely recognized [6], [7], but the research 
on privacy issues incurred by such datasets just com-
mences. Davidson et al. [19], [20], [21] studied the privacy 
issues in workflow provenance, and proposed to achieve 
module privacy preserving and high utility of prove-
nance information via carefully hiding a subset of inter-
mediate data. This general idea is similar to ours, yet our 
research mainly focuses on data privacy preserving from 
an economical cost perspective while theirs concentrates 
majorly on functionality privacy of workflow modules 
rather than data privacy. Our research also differs from 
theirs in several aspects such as data hiding techniques, 
privacy quantification and cost models. But our approach 
can be complementarily used for selection of hidden data 
items in their research if economical cost is considered. 

The PPDP research community has investigated exten-
sively on privacy-preserving issues and made fruitful 
progress with a variety of privacy models and preserving 
methods [13]. Privacy principles such as k-anonymity [22] 
and l-diversity [23] are put forth to model and quantify 
privacy, yet most of them are only applied to one single 
dataset. Privacy principles for multiple datasets are also 
proposed, but they aim at specific scenarios such as con-
tinuous data publishing or sequential data releasing [13]. 
The research in [24], [25] exploits information theory to 
quantify the privacy via utilizing the maximum entropy 
principle [26]. The privacy quantification herein is based 
on the work in [24], [25]. Many anonymization techniques 
like generalization [12] have been proposed to preserve 
privacy, but these methods alone fail to solve the problem 
of preserving privacy for multiple datasets. Our approach 
integrates anonymization with encryption to achieve pri-
vacy preserving of multiple datasets. Moreover, we con-



ZHANG ET AL.: A PRIVACY LEAKAGE UPPER-BOUND CONSTRAINT BASED APPROACH FOR COST-EFFECTIVE PRIVACY PRESERVING OF INTER-
MEDIATE DATASETS IN CLOUD  3 

 

sider the economical aspect of privacy preserving, adher-
ing to the pay-as-you-go feature of cloud computing. 

3 MOTIVATING EXAMPLE AND PROBLEM ANALYSIS 

Section 3.1 shows a motivating example to drive our re-
search. The problem of reducing the privacy-preserving 
cost incurred by the storage of intermediate datasets is 
analyzed in Section 3.2. 

3.1 Motivating Example 
A motivating scenario is illustrated in Fig.1 where an on-
line health service provider, e.g., Microsoft HealthVault 
[27], has moved data storage into cloud for economical 
benefits. Original datasets are encrypted for confidentiali-
ty. Data users like governments or research centres access 
or process part of original datasets after anonymization. 
Intermediate datasets generated during data access or 
process are retained for data reuse and cost saving. Two 
independently generated intermediate datasets (a) and (b) 
in Fig.1 are anonymized to satisfy 2-diversity, i.e., at least 
two individuals own the same quasi-identifier and each 
quasi-identifier corresponds to at least two sensitive val-
ues [23]. Knowing that a lady aged 25 living in 21400 (cor-
responding quasi-identifier is 〈214 ∗, female, young〉) is in 
both datasets, an adversary can infer that this individual 
suffers from HIV with high confidence if (a) and (b) are 
collected together. Hiding (a) or (b) by encryption is a 
promising way to prevent such a privacy breach. Assume 
(a) and (b) are of the same size, the frequency of accessing 
(a) is 10 and that of (b) is 100. We hide (a) to preserve pri-
vacy because this can incur less expense than hiding (b). 

In most real-world applications, a large number of in-
termediate datasets are involved. Hence, it is challenging 
to identify which datasets should be encrypted to ensure 
that privacy leakage requirements are satisfied while 
keeping the hiding expenses as low as possible. 

3.2 Problem Analysis 

3.2.1 Sensitive Intermediate Dataset Management 
Similar to [6], data provenance is employed to manage 
intermediate datasets in our research. Provenance is com-
monly defined as the origin, source or history of deriva-
tion of some objects and data, which can be reckoned as 
the information upon how data was generated [28]. Re-
producibility of data provenance can help to regenerate a 
dataset from its nearest existing predecessor datasets 
rather than from scratch [6], [20].  We  assume  herein  that 

Fig. 1. A scenario showing privacy threats due to intermediate datasets. 

the information recorded in data provenance is leveraged 
to build up the generation relationships of datasets [6]. 

We define several basic notations below. Let do  be a pri-
vacy-sensitive original dataset. We use 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛} 
to denote a group of intermediate datasets generated from 
do  where n is the number of intermediate datasets. Note 
that the notion of intermediate data herein refers to both 
intermediate and resultant data [6]. Directed Acyclic 
Graph (DAG) is exploited to capture the topological struc-
ture of generation relationships among these datasets.  

Definition 1 (Sensitive Intermediate Dataset Graph) A 
DAG representing the generation relationships of inter-
mediate datasets 𝐷𝐷  from 𝑑𝑑𝑜𝑜  is defined as a Sensitive In-
termediate dataset Graph, denoted as SIG. Formally, 
𝑆𝑆𝑆𝑆𝐺𝐺 = 〈𝑉𝑉,𝐸𝐸〉 , where 𝑉𝑉 = {𝑑𝑑𝑜𝑜}∪ 𝐷𝐷 , 𝐸𝐸  is a set of directed 
edges.  A directed edge 〈𝑑𝑑𝑝𝑝 ,𝑑𝑑𝑐𝑐〉 in 𝐸𝐸 means that part or all 
of 𝑑𝑑𝑐𝑐  is generated from 𝑑𝑑𝑝𝑝 , where 𝑑𝑑𝑝𝑝 ,𝑑𝑑𝑐𝑐 ∈ {𝑑𝑑𝑜𝑜} ∪𝐷𝐷.  

In particular, a SIG becomes a tree structure if each da-
taset in 𝐷𝐷 is generated from only one parent dataset. Then, 
we have the following definition for this situation. 

Definition 2 (Sensitive Intermediate Dataset Tree) A SIG is 
defined as a Sensitive Intermediate dataset Tree (SIT) if it 
is a tree structure. The root of the tree is 𝑑𝑑𝑜𝑜 . 

 A SIG or SIT not only represents the generation rela-
tionships of an original dataset and its intermediate data-
sets, but also captures the propagation of privacy-sensitive 
information among such datasets. Generally, the privacy-
sensitive information in 𝑑𝑑𝑜𝑜  is scattered into its offspring 
datasets. Hence, a SIG or SIT can be employed to analyze 
privacy disclosure of multiple datasets. In this paper, we 
first present our approach on a SIT, and then extend it to a 
SIG with minor modifications in Section 5. 

An intermediate dataset is assumed to have been ano-
nymized to satisfy certain privacy requirements. However, 
putting multiple datasets together may still invoke a high 
risk of revealing privacy-sensitive information, resulting 
in violating the privacy requirements. Privacy leakage of a 
dataset 𝑑𝑑  is denoted as 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑) , meaning the privacy-
sensitive information obtained by an adversary after 𝑑𝑑 is 
observed. The value of 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑)  can be deduced directly 
from 𝑑𝑑, which is described in Section 4.1. Similarly, priva-
cy leakage of multiple datasets in 𝐷𝐷 is denoted as 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷), 
meaning the privacy-sensitive information obtained by an 
adversary after all datasets in 𝐷𝐷 are observed. It is chal-
lenging to acquire the exact value of 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷) due to the 
inference channels among multiple datasets [24].  

3.2.2 Privacy-Preserving Cost Problem 
Privacy-preserving cost of intermediate datasets stems 
from frequent en/decryption with charged cloud services. 
Cloud service venders have set up various pricing models 
to support the pay-as-you-go model, e.g., Amazon Web 
Services pricing model [29]. Practically, en/decryption 
needs computation power, data storage and other cloud 
services. To avoid pricing details and focus on the discus-
sion of our core ideas, we combine the prices of various 
services required by en/decryption into one. This com-
bined price is denoted as 𝑃𝑃𝑅𝑅. 𝑃𝑃𝑅𝑅 indicates the overhead of 
en/decryption on per GB data per execution. 
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Similar to [6], an attribute vector is employed to frame 
several important properties of the dataset 𝑑𝑑𝑖𝑖 . The vector 
is denoted as 〈𝑆𝑆𝑖𝑖 ,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 ,𝑓𝑓𝑖𝑖 ,𝑃𝑃𝑃𝑃𝑖𝑖〉. The term 𝑆𝑆𝑖𝑖  represents the 
size of 𝑑𝑑𝑖𝑖 . The term 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 , a dichotomy label, signifies 
whether 𝑑𝑑𝑖𝑖  is hidden. The term 𝑓𝑓𝑖𝑖  indicates the frequency 
of accessing or processing 𝑑𝑑𝑖𝑖 . If 𝑑𝑑𝑖𝑖  is labeled as hidden, it 
will be en/decrypted every time when accessed or proc-
essed. Thus, the larger 𝑓𝑓𝑖𝑖  is, the more cost will be incurred 
if 𝑑𝑑𝑖𝑖  is hidden. Usually, 𝑓𝑓𝑖𝑖  is estimated from the data 
provenance. The term 𝑃𝑃𝑃𝑃𝑖𝑖  is the privacy leakage through 
𝑑𝑑𝑖𝑖 , and is computed by 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑖𝑖).   

Datasets in 𝐷𝐷 can be divided into two sets. One is for 
encrypted datasets, denoted as 𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 . The other is for un-
encrypted datasets, denoted as 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 . Then, the equations 
𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ∪ 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 = 𝐷𝐷 and 𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ∩ 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 = ∅ hold. We define the 
pair 〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉 as a global privacy-preserving solution. 

The privacy-preserving cost incurred by a solution 
〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉 is denoted as 𝐶𝐶𝑝𝑝𝑝𝑝 (〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉). With the nota-
tions framed above, the cost 𝐶𝐶𝑝𝑝𝑝𝑝 (〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉) in a given 
period [𝑇𝑇0, T], can be deduced by the following formula: 

 𝐶𝐶𝑝𝑝𝑝𝑝 (〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉) =  ∫ (∑ 𝑆𝑆𝑖𝑖 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑖𝑖 ∙ 𝑡𝑡𝑑𝑑𝑖𝑖∈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ) ∙ 𝑑𝑑𝑡𝑡𝑇𝑇
𝑡𝑡=𝑇𝑇0

.  (1) 
The privacy-preserving cost rate for 𝐶𝐶𝑝𝑝𝑝𝑝 (〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉), 

denoted as 𝐶𝐶𝑅𝑅𝑝𝑝𝑝𝑝 , is defined as follows. 
                    𝐶𝐶𝑅𝑅𝑝𝑝𝑝𝑝 ≜ ∑ 𝑆𝑆𝑖𝑖 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖∈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐  .           (2) 

In the real world, 𝑆𝑆𝑖𝑖  and 𝑓𝑓𝑖𝑖   possibly vary over time, but 
we assume herein that they are static so that we can con-
cisely present the core ideas of our approach. The dy-
namic case will be explored in our future work. With this 
assumption, 𝐶𝐶𝑅𝑅𝑝𝑝𝑝𝑝  determines 𝐶𝐶𝑝𝑝𝑝𝑝 (〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉  in a given 
period. Thus, we blur their meanings subsequently.  

The problem of how to make privacy-preserving cost as 
low as possible given a SIT can be modeled as an optimi-
zation problem on 𝐶𝐶𝑅𝑅𝑝𝑝𝑝𝑝 : 

  Minimize 𝐶𝐶𝑅𝑅𝑝𝑝𝑝𝑝 = ∑ 𝑆𝑆𝑖𝑖 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖∈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 , 𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ⊆ 𝐷𝐷.       (3) 
Meanwhile, the privacy leakage caused by unencrypted 

datasets in 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒  must be under a given threshold.  
Definition 3 (Privacy Leakage Constraint) Let 𝜀𝜀  be the 

privacy leakage threshold allowed by a data holder, then 
a privacy requirement can be represented as 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ) ≤
𝜀𝜀,  𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ⊆ 𝐷𝐷. This privacy requirement is defined as a Pri-
vacy Leakage Constraint, denoted as PLC. 

With a PLC, the problem defined in (3) becomes a con-
strained optimization problem. So, we can save privacy-
preserving cost by minimizing it. As it is challenging to 
obtain the exact value of 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ), which is formulated 
in Section 4.2, our approach is to address the problem via 
substituting the PLC with one of its sufficient conditions.  

4 PRIVACY REPRESENTATION AND PRIVACY 
LEAKAGE UPPER-BOUND CONSTRAINT 

It is fundamental to measure privacy leakage of anony-
mized datasets to quantitatively describe how much pri-
vacy is disclosed. Privacy quantification of a single data-
set is stated in Section 4.1. We point out the challenge of 
privacy quantification of multiple datasets in Section 4.2 
and then derive a privacy leakage upper-bound con-
straint correspondingly in Section 4.3. 

4.1 Single Intermediate Dataset Privacy 
Representation 

The privacy-sensitive information is essentially regarded 
as the association between sensitive data and individuals 
[13]. We denote an original sensitive dataset as 𝑑𝑑𝑜𝑜 ; an ano-
nymized intermediate dataset as 𝑑𝑑∗ ; the set of sensitive 
data as 𝑆𝑆𝐷𝐷; and the set of quasi-identifiers as 𝑄𝑄𝑆𝑆. Quasi-
identifiers, which represent the groups of anonymized 
data, can lead to privacy breach if they are too specific that 
only a small group of people are linked to them [13]. Let 𝑆𝑆 
denote a random variable ranging in 𝑆𝑆𝐷𝐷, and 𝑄𝑄 be a ran-
dom variable ranging within 𝑄𝑄𝑆𝑆 . Suppose s ∈ 𝑆𝑆𝐷𝐷  and 
𝑞𝑞 ∈ 𝑄𝑄𝑆𝑆. The joint possibility of an association 〈𝑠𝑠, 𝑞𝑞〉, de-
noted as 𝑝𝑝(𝑆𝑆 = 𝑠𝑠,𝑄𝑄 = 𝑞𝑞) (abbr. 𝑝𝑝(s,𝑞𝑞)), is the information 
that adversaries intend to recover [13]. When an adversary 
has observed 𝑑𝑑∗ and a quasi-identifier 𝑞𝑞, the conditional 
possibility 𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑄𝑄 = 𝑞𝑞)  representing intrinsic privacy-
sensitive information of an individual can be inferred. If 
𝑝𝑝(𝑆𝑆 = 𝑠𝑠|𝑄𝑄 = 𝑞𝑞) is deduced as a high value or even 1.0, the 
privacy of the individual with 𝑞𝑞 will be awfully breached.  

We employ the approach proposed in [25] to compute 
the probability distribution 𝑃𝑃∗(𝑆𝑆,𝑄𝑄)  of 〈𝑠𝑠,𝑞𝑞〉  in 𝑑𝑑𝑜𝑜  after 
observing 𝑑𝑑∗. More details can be found in Appendix A.1 
(All appendices are included in the supplemental file). 
Then, the privacy quantification of dataset 𝑑𝑑∗ can be ful-
filled. Formally, 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑∗) is defined as: 

           𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑∗) ≜  𝐻𝐻(𝑆𝑆,𝑄𝑄)− 𝐻𝐻∗(𝑆𝑆,𝑄𝑄).                           (4) 
𝐻𝐻(𝑆𝑆,𝑄𝑄) is the entropy of random variable 〈𝑆𝑆,𝑄𝑄〉 before 

𝑑𝑑∗  is observed, while 𝐻𝐻∗(𝑆𝑆,𝑄𝑄)  is that after observation. 
𝑃𝑃(𝑄𝑄, 𝑆𝑆) is estimated as a uniform distribution according to 
the maximum entropy principle [25]. Based on this, 
𝐻𝐻(𝑆𝑆,𝑄𝑄)  can be computed by 𝐻𝐻(𝑆𝑆,𝑄𝑄)  =  𝐹𝐹𝑜𝑜𝐹𝐹(|𝑄𝑄𝑆𝑆| ∙ |𝑆𝑆𝐷𝐷|) . 
𝐻𝐻∗(𝑆𝑆,𝑄𝑄) is calculated from distribution 𝑃𝑃∗(𝑆𝑆,𝑄𝑄) by: 

         𝐻𝐻∗(𝑆𝑆,𝑄𝑄) =  −∑ 𝑝𝑝(𝑠𝑠, 𝑞𝑞)𝑞𝑞∈𝑄𝑄𝑆𝑆,𝑠𝑠∈𝑆𝑆𝑆𝑆 ∙ 𝐹𝐹𝑜𝑜𝐹𝐹(𝑝𝑝(𝑠𝑠, 𝑞𝑞)).         (5) 

4.2 Joint Privacy Leakage of Multiple Intermediate 
Datasets 

The value of the joint privacy leakage incurred by multiple 
datasets  in 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛}, 𝑛𝑛 ∈ 𝑁𝑁, is defined by: 

  𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷)  ≜  𝐻𝐻(𝑆𝑆,𝑄𝑄) – 𝐻𝐻𝐷𝐷(𝑆𝑆,𝑄𝑄).                        (6) 
𝐻𝐻(𝑆𝑆,𝑄𝑄) and 𝐻𝐻𝐷𝐷(𝑆𝑆,𝑄𝑄) are the entropy of 〈𝑆𝑆,𝑄𝑄〉 before and 

after datasets in 𝐷𝐷  are observed, respectively. 𝐻𝐻(𝑆𝑆,𝑄𝑄)  =
 𝐹𝐹𝑜𝑜𝐹𝐹(|𝑄𝑄𝑆𝑆| ∙ |𝑆𝑆𝐷𝐷|). 𝐻𝐻𝐷𝐷(𝑆𝑆,𝑄𝑄) can be calculated once 𝑃𝑃(𝑆𝑆,𝑄𝑄) is 
estimated after datasets in 𝐷𝐷 are observed. Given the rela-
tionship between 𝜀𝜀 and 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒) in PLC, 𝜀𝜀 ranges in the 
interval [max1≤𝑖𝑖≤𝑛𝑛{𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑖𝑖)}, 𝐹𝐹𝑜𝑜𝐹𝐹(|𝑄𝑄𝑆𝑆| ∙ |𝑆𝑆𝑆𝑆|)].  

Zhu et al. [24] proposed an approach to indirectly esti-
mate 𝑃𝑃(S,𝑄𝑄)  for multiple datasets with the maximum 
entropy principle. But this approach becomes inefficient 
when many datasets are involved because the number of 
variables and constraints possibly increase sharply when 
the number of datasets grows. According to the experi-
ments in [24], it takes more than 200 minutes to quantify 
the privacy of two datasets with 6000 records. Further, 
since 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒  is uncertain before a solution is found, we need 
to try different 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 , where 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ∈ 2𝐷𝐷 . So, the inefficiency 
will become unacceptable in many applications where a 
large number of intermediate datasets are involved. 

Fortunately, the PLC can be achieved without exactly 
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acquiring 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ) because our goal is to control the 
privacy disclosure caused by multiple datasets. A promis-
ing approach is to substitute the PLC with its sufficient 
conditions. Specifically, our approach is to replace the 
exact value of 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ) with one of its upper bounds 
which can be calculated efficiently.  

4.3 Upper-Bound Constraint of Joint Privacy 
Leakage 

We attempt to derive an upper bound of 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ) that 
can be easily computed. Intuitively, if an upper bound 
𝐵𝐵(𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 )) is found, a stronger privacy leakage con-
straint 𝐵𝐵(𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 )) ≤ 𝜀𝜀 can be a sufficient condition of 
the PLC. Accordingly, 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 )  will never exceed the 
threshold 𝜀𝜀  if 𝐵𝐵(𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 )) ≤ 𝜀𝜀 holds.  

Let 𝑑𝑑𝑢𝑢 , 𝑑𝑑𝑣𝑣  be two datasets whose privacy leakage are 
𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑢𝑢) and 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑣𝑣), respectively. The joint privacy lea-
kage caused by them together is 𝑃𝑃𝑃𝑃𝑚𝑚({𝑑𝑑𝑢𝑢 ,𝑑𝑑𝑣𝑣}). As infor-
mation gain is never negative, 𝑃𝑃𝑃𝑃𝑚𝑚({𝑑𝑑𝑢𝑢 ,𝑑𝑑𝑣𝑣})  is not less 
than neither 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑢𝑢) nor 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑣𝑣). Further, 𝑃𝑃𝑃𝑃𝑚𝑚({𝑑𝑑𝑢𝑢 ,𝑑𝑑𝑣𝑣})  
will not exceed the sum of 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑢𝑢)  and 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑣𝑣) , i.e., 
𝑃𝑃𝑃𝑃𝑚𝑚({𝑑𝑑𝑢𝑢 ,𝑑𝑑𝑣𝑣}) ≤ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑢𝑢) + 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑣𝑣) , where the equality 
holds if and only if the information provided by 𝑑𝑑𝑢𝑢 , 𝑑𝑑𝑣𝑣  do 
not overlap. This property of joint privacy leakage can be 
extended to multiple unencrypted datasets in 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 : 

        𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ) ≤ ∑ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑖𝑖)𝑑𝑑𝑖𝑖∈𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 .                     (7) 
Hence, the sum of privacy leakage of unencrypted da-

tasets can be deemed as an upper bound of 𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 ). 
Based on replacing the PLC with such an upper-bound 
constraint, we propose an approach to address the opti-
mization problem in (3).  See Section 5 for details 

5 PRIVACY LEAKAGE UPPER-BOUND CONSTRAINT 
BASED APPROACH FOR PRIVACY PRESERVING  

We propose an upper-bound constraint based approach 
to select the necessary subset of intermediate datasets that 
needs to be encrypted for minimizing privacy-preserving 
cost. In Section 5.1, we specify relevant basic notations 
and elaborate two useful properties on a SIT. The privacy 
leakage upper-bound constraint is decomposed layer by 
layer in Section 5.2. A constrained optimization problem 
with the PLC is then transformed into a recursive form in 
Section 5.3. In Section 5.4, a heuristic algorithm is de-
signed for our approach. We extend our approach to a 
SIG in Section 5.5. 

5.1 Basic Notations and Properties on SIT 
Let 𝑑𝑑𝑟𝑟 ∈ 𝐷𝐷 denote an intermediate dataset in a SIT. Its 
directly generated datasets constitute a set 𝐶𝐶𝐷𝐷(𝑑𝑑𝑟𝑟)  ≜
 {𝑑𝑑𝑟𝑟1, … ,𝑑𝑑𝑟𝑟𝑖𝑖 }, where 𝑑𝑑𝑟𝑟1 , …, 𝑑𝑑𝑟𝑟𝑖𝑖 ∈ 𝐷𝐷 . For any 𝑑𝑑 ∈  𝐶𝐶𝐷𝐷(𝑑𝑑𝑟𝑟), 
 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑) ≤ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑟𝑟) because all information in 𝑑𝑑 is from 𝑑𝑑𝑟𝑟 . 
Further, let 𝑃𝑃𝐷𝐷(𝑑𝑑𝑟𝑟)  ≜  {𝑑𝑑𝑟𝑟1, … ,𝑑𝑑𝑟𝑟𝑟𝑟 } be all posterity data-
sets generated from 𝑑𝑑𝑟𝑟 , where 𝑑𝑑𝑟𝑟1 , …, 𝑑𝑑𝑟𝑟𝑟𝑟 ∈ 𝐷𝐷. Similar to 
𝐶𝐶𝐷𝐷(𝑑𝑑𝑟𝑟) , 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑) ≤ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑟𝑟) for any 𝑑𝑑 ∈  𝑃𝑃𝐷𝐷(𝑑𝑑𝑟𝑟). A subtree 
of a SIT with 𝑑𝑑𝑟𝑟 ∈ 𝐷𝐷 being its root is denoted as 𝑆𝑆𝐷𝐷𝑇𝑇(𝑑𝑑𝑟𝑟). 
Lemma 1. If 𝑑𝑑𝑟𝑟 ∈ 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 , then for any 𝑑𝑑 ∈ 𝑃𝑃𝐷𝐷(𝑑𝑑𝑟𝑟), 𝑑𝑑 ∈ 𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 . 

The proof of Lemma 1 can be found in Appendix B.1. 
Lemma 1 defines a useful property named Root Privacy 

Coverage (RPC) property. This property means that it is 
unnecessary to check the datasets in 𝑃𝑃𝐷𝐷(𝑑𝑑𝑟𝑟) if 𝑑𝑑𝑟𝑟  unen-
crypted. Thus, 𝑆𝑆𝐷𝐷𝑇𝑇(𝑑𝑑𝑟𝑟)  is somewhat equivalent to 𝑑𝑑𝑟𝑟  
from the privacy-preserving perspective. Such a subtree is 
named as an unencrypted subtree, denoted as 𝑈𝑈𝑆𝑆𝑇𝑇. 𝑈𝑈𝑆𝑆𝑇𝑇s 
have the RPC property. Due to the RPC property, we only 
need to consider part of intermediate datasets rather than 
all when identifying which datasets should be encrypted.  
Lemma 2. Given a privacy-preserving solution 〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉 

with the minimal cost, a graph denoted as 𝐸𝐸𝐷𝐷𝐺𝐺 =
〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ∪ {𝑑𝑑𝑜𝑜},𝐸𝐸′ 〉 must be a tree structure, where 𝐸𝐸′ ⊆ 𝐸𝐸. 
The proof of Lemma 2 can be found in Appendix B.2. 

This lemma defines a property named Encrypted Dataset 
Tree (EDT). The property means that all encrypted data-
sets in a SIT constitute a tree structure if the privacy-
preserving cost is the minimal. Consequently, the datasets 
in 𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐  are always connected, regardless of which part of 
𝐷𝐷  constitutes 𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 . Moreover, any subtree with its root 
connected to EDG is an UST because of the RPC property. 
According to the EDT property, the descendant interme-
diate datasets of a dataset have the possibility to be en-
crypted if this dataset is encrypted. Hence, it is feasible to 
construct a privacy-preserving solution with the minimal 
cost layer by layer from the root of a SIT to leaves. 

Let 𝐻𝐻 be the height of a SIT and 𝑃𝑃𝑖𝑖  denote the layer 
where datasets with depth 𝑖𝑖 locate, 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻. Let 𝐷𝐷𝑖𝑖  de-
note the set of datasets in 𝑃𝑃𝑖𝑖 . The set of encrypted datasets 
in 𝑃𝑃𝑖𝑖  is denoted as 𝐸𝐸𝐷𝐷𝑖𝑖. Further, the set of all children da-
tasets of datasets in 𝐸𝐸𝐷𝐷𝑖𝑖  is denoted as 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖+1 , i.e., 
𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖+1 = ⋃ 𝐶𝐶𝐷𝐷(𝑑𝑑)𝑑𝑑∈𝐸𝐸𝐷𝐷𝑖𝑖 . Then, the set of unencrypted da-
tasets in 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖  is denoted as 𝑈𝑈𝐷𝐷𝑖𝑖. Note that 𝑈𝑈𝐷𝐷𝑖𝑖 is not re-
quired to be equal to the set of unencrypted datasets in 𝑃𝑃𝑖𝑖 . 

Suppose that the encrypted datasets before the layer 𝑃𝑃𝑖𝑖  
have been identified. Then, the encrypted datasets in 𝑃𝑃𝑖𝑖  
are selected from 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖−1, rather than from all datasets in 
𝐷𝐷𝑖𝑖. A possible choice of encryption is defined as a local 
encryption solution in 𝑃𝑃𝑖𝑖 , denoted as 𝜋𝜋𝑖𝑖 = 〈𝐸𝐸𝐷𝐷𝑖𝑖 ,𝑈𝑈𝐷𝐷𝑖𝑖〉. The 
set of all potential local solutions in the layer 𝑃𝑃𝑖𝑖  is denoted 
as 𝛬𝛬𝑖𝑖 = {𝜋𝜋𝑖𝑖𝑟𝑟 }, where 𝑟𝑟 is the number of solutions. Further, 
a group of local encryption solutions, which are con-
structed layer by layer, constitute a global encryption so-
lution, denoted as 𝜋𝜋𝑘𝑘 =  〈𝜋𝜋1𝑟𝑟1 , … ,𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻 〉, where 𝜋𝜋𝑖𝑖𝑟𝑟 𝑖𝑖 ∈  𝛬𝛬𝑖𝑖 , 
1 ≤ 𝑖𝑖 ≤ 𝐻𝐻 , 1 ≤ 𝑘𝑘 ≤ ∏ |𝛬𝛬𝑖𝑖|𝐻𝐻

𝑖𝑖=1 . 𝜋𝜋𝑘𝑘  can determine a global 
privacy-preserving solution 〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉, 𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 = ⋃ 𝐸𝐸𝐷𝐷𝑖𝑖𝐻𝐻

𝑖𝑖=1 . 

5.2 Recursive Privacy Leakage Constraint 
Decomposition 

To satisfy the PLC, we decompose the PLC recursively 
into different layers in a SIT. Then, the problem stated in 
(3) can be addressed via tackling a series of small-scale 
optimization problems. Let the privacy leakage threshold 
required in the layer 𝑃𝑃𝑖𝑖  be 𝜀𝜀𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻. The privacy lea-
kage incurred by 𝑈𝑈𝐷𝐷𝑖𝑖 in the solution 𝜋𝜋𝑖𝑖  can never be larg-
er than 𝜀𝜀𝑖𝑖 , i.e., 𝑃𝑃𝑃𝑃𝑚𝑚(𝑈𝑈𝐷𝐷𝑖𝑖) ≤ 𝜀𝜀𝑖𝑖 . The threshold 𝜀𝜀𝑖𝑖  can be re-
garded as the privacy leakage threshold of the remainder 
part of a SIT after the layer 𝑃𝑃𝑖𝑖−1. In terms of the basic idea 
of our approach, the privacy leakage constraint 
𝑃𝑃𝑃𝑃𝑚𝑚(𝑈𝑈𝐷𝐷𝑖𝑖) ≤ 𝜀𝜀𝑖𝑖  is substituted by one of its sufficient condi-
tions. According to (7), the PLC can be substituted by a set 
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of privacy leakage constraints, named as PLC1: 
              ∑ 𝑃𝑃𝑃𝑃𝑠𝑠𝑑𝑑∈𝑈𝑈𝐷𝐷𝑖𝑖 (𝑑𝑑) ≤ 𝜀𝜀𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻.                     (8) 

The above threshold 𝜀𝜀𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻, is calculated by 

   � 𝜀𝜀𝑖𝑖 =  𝜀𝜀𝑖𝑖−1 −∑ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑)𝑑𝑑∈𝑈𝑈𝐷𝐷𝑖𝑖−1
  𝜀𝜀1 =  𝜀𝜀.           �,                     (9) 

A local encryption solution in the layer 𝑃𝑃𝑖𝑖  is feasible if it 
satisfies the PLC1 in (8). The set of feasible solutions in 𝑃𝑃𝑖𝑖  
is denoted as 𝛬𝛬𝑖𝑖

𝑓𝑓 ≜ {𝜋𝜋𝑖𝑖𝑟𝑟 |𝜋𝜋𝑖𝑖𝑟𝑟 ∈ 𝛬𝛬𝑖𝑖}, where 𝑟𝑟 is the number of 
feasible solutions. Similarly, a feasible global encryption 
solution can be denoted as 𝜋𝜋𝑓𝑓𝑘𝑘 ≜  〈𝜋𝜋1𝑟𝑟1 , … ,𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻 〉 , where 
𝜋𝜋𝑖𝑖𝑟𝑟 𝑖𝑖 ∈ 𝛬𝛬𝑖𝑖

𝑓𝑓 , 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻, 1 ≤ 𝑘𝑘 ≤ ∏ |𝛬𝛬𝑖𝑖|𝐻𝐻
𝑖𝑖=1 . 

Given a feasible global solution 𝜋𝜋𝑓𝑓𝑘𝑘  for a SIT, we com-
press the SIT into a ‘compressed’ tree layer by layer from 
𝑃𝑃1  to 𝑃𝑃𝐻𝐻 , denoted as 𝐶𝐶𝑇𝑇(𝜋𝜋𝑓𝑓𝑘𝑘), where H is the height of the 
EDG in the SIT. The construction of 𝐶𝐶𝑇𝑇(𝜋𝜋𝑓𝑓𝑘𝑘) is achieved 
via three steps. Firstly, the datasets in 𝐸𝐸𝐷𝐷𝑖𝑖  are ‘com-
pressed’ into one encrypted node. According to the EDT 
property, these compressed nodes together with the orig-
inal dataset appear to be a string with the length being 𝐻𝐻. 
Secondly, all offspring datasets of the datasets in 𝑈𝑈𝐷𝐷𝑖𝑖 are 
omitted. This will not affect the privacy preserving in 
terms of the RPC property. Thirdly, the datasets in 𝑈𝑈𝐷𝐷𝑖𝑖 
are compressed into one node. Note that the action ‘com-
press’ here is imaginary from a logical perspective for a 
demonstration purpose. Construction process of 𝐶𝐶𝑇𝑇(𝜋𝜋𝑓𝑓𝑘𝑘) 
is illustrated by Fig.2 where the first 𝑖𝑖 layers have been 
built up according the above steps.  
Theorem 1. Under the PLC1 constraint in (8), a construction 

process of a compressed tree on a SIT corresponds to a feasi-
ble global encryption solution 𝜋𝜋𝑓𝑓𝑘𝑘 , i.e., the privacy leakage 
𝑃𝑃𝑃𝑃𝑚𝑚(𝐷𝐷) with regard to 𝜋𝜋𝑓𝑓𝑘𝑘  can be ensured beneath the given 
threshold 𝜀𝜀. 
The proof of Theorem 1 can be found in Appendix B.3. 

Complying with the PLC1, we can obtain a feasible global 
encryption solution in the construction a compressed tree.  

5.3 Minimum Privacy-Preserving Cost 
Usually, more than one feasible global encryption solu-
tion exists under the PLC1 constraints, because there are 
many alternative local solutions in each layer. Further, 
each intermediate datasets has various size and frequency 
of usage, leading to different overall cost with different 
solutions. Therefore, it is desired to find a feasible solu-
tion with the minimum privacy-preserving cost under 
privacy leakage constraints. Note that the minimum solu-
tion mentioned herein is somewhat pseudo-minimum 
because an upper bound of joint privacy leakage is just an 
approximation of its exact value. But a solution can be 
exactly minimal in the sense of the PLC1 constraints. We 
derive the recursive minimal cost formula as follows. 

Fig. 2. Construction of a compressed tree. 

The minimum cost for privacy preserving of the data-
sets after 𝑃𝑃𝑖𝑖−1  under the privacy leakage threshold 𝜀𝜀𝑖𝑖  is 
represented as 𝐶𝐶𝐶𝐶𝑖𝑖(𝜀𝜀𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻. Given a feasible local 
encryption solution 𝜋𝜋𝑖𝑖 = 〈𝐸𝐸𝐷𝐷𝑖𝑖 ,𝑈𝑈𝐷𝐷𝑖𝑖〉 in 𝑃𝑃𝑖𝑖 , the cost incurred 
by the encrypted datasets in 𝑃𝑃𝑖𝑖  is denoted as 𝐶𝐶𝑖𝑖(𝜋𝜋𝑖𝑖): 

𝐶𝐶𝑖𝑖(𝜋𝜋𝑖𝑖) ≜  ∑ 𝑆𝑆𝑘𝑘 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑘𝑘 , 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑑𝑑𝑘𝑘∈𝐸𝐸𝐷𝐷𝑖𝑖 .       (10) 
Then, 𝐶𝐶𝐶𝐶𝑖𝑖(𝜀𝜀𝑖𝑖) is calculated by the recursive formula: 

⎩
⎨

⎧
𝐶𝐶𝐶𝐶𝑖𝑖(𝜀𝜀𝑖𝑖) = min

𝜋𝜋𝑖𝑖𝑟𝑟 ∈𝛬𝛬𝑖𝑖
𝑓𝑓
 {∑ (𝑆𝑆𝑘𝑘 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑘𝑘)𝑑𝑑𝑘𝑘∈𝐸𝐸𝐷𝐷𝑖𝑖𝑟𝑟 +

𝐶𝐶𝐶𝐶𝑖𝑖+1(𝜀𝜀𝑖𝑖 − ∑ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑘𝑘)𝑑𝑑𝑘𝑘∈𝑈𝑈𝐷𝐷𝑖𝑖𝑟𝑟 )},
𝐶𝐶𝐶𝐶𝐻𝐻+1(𝜀𝜀𝐻𝐻+1) = 0.           

�      (11) 

As a result, 𝐶𝐶𝐶𝐶1(𝜀𝜀) is the minimum privacy-preserving 
cost required in the optimization problem specified by (3) 
and (8). The privacy-preserving solution 〈𝐷𝐷𝑒𝑒𝑛𝑛𝑐𝑐 ,𝐷𝐷𝑢𝑢𝑛𝑛𝑒𝑒 〉 can 
be determined during the process of acquiring 𝐶𝐶𝐶𝐶1(𝜀𝜀).  

According to the specification of 𝐶𝐶𝐶𝐶𝑖𝑖(𝜀𝜀𝑖𝑖), an optimal 
algorithm can be designed to identify the optimal priva-
cy-preserving solution. The algorithm details can be 
found in Appendix C.1. However, this optimal algorithm 
suffers from poor efficiency due to its huge state-search 
space if a large number of intermediate datasets are in-
volved. The time complexity is analyzed in Appendix C.2. 
As such, it is necessary to turn to heuristic algorithms for 
scenarios where a large number of intermediate datasets 
are involved, in order to obtain a near-optimal solution 
with higher efficiency than the optimal one. 

5.4 Privacy-Preserving Cost Reducing Heuristic 
Algorithm  

In this section, we design a heuristic algorithm to reduce 
privacy-preserving cost. In the state-search space for a 
SIT, a state node 𝑆𝑆𝑁𝑁𝑖𝑖  in the layer 𝑃𝑃𝑖𝑖  herein refers to a vec-
tor of partial local solutions, i.e., 𝑆𝑆𝑁𝑁𝑖𝑖  corresponds to 
〈𝜋𝜋1𝑟𝑟1 , … ,𝜋𝜋𝑖𝑖𝑟𝑟 𝑖𝑖 〉 , where 𝜋𝜋𝑘𝑘𝑟𝑟 𝑘𝑘 ∈ 𝛬𝛬𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤ 𝑖𝑖 . Note that the 
state-search tree generated according to a SIT is different 
from the SIT itself, but the height is the same. Appropri-
ate heuristic information is quite vital to guide the search 
path to the goal state. The goal state in our algorithm is to 
find a near-optimal solution in a limited search space.  

Heuristic values are obtained via heuristic functions. A 
heuristic function, denoted as 𝑓𝑓(𝑆𝑆𝑁𝑁𝑖𝑖), is defined to com-
pute the heuristic value of 𝑆𝑆𝑁𝑁𝑖𝑖 . Generally, 𝑓𝑓(𝑆𝑆𝑁𝑁𝑖𝑖) consists 
of two parts of heuristic information, i.e., 𝑓𝑓(𝑆𝑆𝑁𝑁𝑖𝑖) =
𝐹𝐹(𝑆𝑆𝑁𝑁𝑖𝑖) + ℎ(𝑆𝑆𝑁𝑁𝑖𝑖), where the information 𝐹𝐹(𝑆𝑆𝑁𝑁𝑖𝑖) is gained 
from the start state to the current state node 𝑆𝑆𝑁𝑁𝑖𝑖  and the 
information ℎ(𝑆𝑆𝑁𝑁𝑖𝑖)  is estimated from the current state 
node to the goal state, respectively.  

Intuitively, the heuristic function is expected to guide 
the algorithm to select the datasets with small cost but 
high privacy leakage to encrypt. Based on this, 𝐹𝐹(𝑆𝑆𝑁𝑁𝑖𝑖) is 
defined as 𝐹𝐹(𝑆𝑆𝑁𝑁𝑖𝑖) ≜ 𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟 /(𝜀𝜀 − 𝜀𝜀𝑖𝑖+1), where 𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟  is the pri-
vacy-preserving cost that has been incurred so far, 𝜀𝜀 is the 
initial privacy leakage threshold and 𝜀𝜀𝑖𝑖+1  is the privacy 
leakage threshold for the layers after 𝑃𝑃𝑖𝑖 . Specifically, 𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟  
is calculated by 𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟 = ∑ (𝑆𝑆𝑟𝑟 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑟𝑟 )𝑑𝑑𝑟𝑟∈⋃ 𝐸𝐸𝐷𝐷𝑘𝑘𝑖𝑖

𝑘𝑘=1
. The small-

er 𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟  is, the smaller total privacy-preserving cost will be. 
Larger (𝜀𝜀 − 𝜀𝜀𝑖𝑖+1) means more datasets before 𝑃𝑃𝑖𝑖+1 remain 
unencrypted in terms of the RPC property, i.e., more pri-
vacy-preserving expense can saved.  

do 
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The value of ℎ(𝑆𝑆𝑁𝑁𝑖𝑖) is defined as ℎ(𝑆𝑆𝑁𝑁𝑖𝑖) = (𝜀𝜀𝑖𝑖+1 ∙ 𝐶𝐶𝑑𝑑𝑒𝑒𝑠𝑠 ∙
𝐵𝐵𝐹𝐹𝑆𝑆𝑉𝑉𝐺𝐺 )/𝑃𝑃𝑃𝑃𝑆𝑆𝑉𝑉𝐺𝐺 . Similar to the meaning of (𝜀𝜀 − 𝜀𝜀𝑖𝑖+1)  in 
𝐹𝐹(𝑆𝑆𝑁𝑁𝑖𝑖), smaller 𝜀𝜀𝑖𝑖+1  in ℎ(𝑆𝑆𝑁𝑁𝑖𝑖) implies more datasets be-
fore 𝑃𝑃𝑖𝑖+1 are kept unencrypted. If a dataset with smaller 
depth in a SIT is encrypted, more datasets are possibly 
unencrypted than that with larger depth, because the 
former possibly has more descendant datasets.  For a state 
node 𝑆𝑆𝑁𝑁𝑖𝑖 , the datasets in its corresponding 𝐸𝐸𝐷𝐷𝑘𝑘  are the 
roots of a variety of subtrees of the SIT. These trees consti-
tute a forest, denoted as 𝐹𝐹𝜋𝜋𝑖𝑖 . In ℎ(𝑆𝑆𝑁𝑁𝑖𝑖), 𝐶𝐶𝑑𝑑𝑒𝑒𝑠𝑠  represents the 
total cost of the datasets in 𝐹𝐹𝜋𝜋𝑖𝑖 , and is computed via 
𝐶𝐶𝑑𝑑𝑒𝑒𝑠𝑠 =  ∑ ∑ (𝑆𝑆𝑟𝑟 ∙ 𝐶𝐶𝑅𝑅 ∙ 𝑓𝑓𝑟𝑟 )𝑑𝑑𝑟𝑟 ∈𝑃𝑃𝐷𝐷(𝑑𝑑𝐹𝐹 )𝑑𝑑𝐹𝐹∈𝐸𝐸𝐷𝐷𝑘𝑘 . Potentially, the less 
𝐶𝐶𝑑𝑑𝑒𝑒𝑠𝑠  is, the fewer datasets in following layers will be en-
crypted. 𝐵𝐵𝐹𝐹𝑆𝑆𝑉𝑉𝐺𝐺  is the average branch factor of the forest 
𝐹𝐹𝜋𝜋𝑖𝑖 , and can be computed by 𝐵𝐵𝐹𝐹𝑆𝑆𝑉𝑉𝐺𝐺 = 𝑁𝑁𝐸𝐸/𝑁𝑁𝑆𝑆, where 𝑁𝑁𝐸𝐸  is 
the number of edges and 𝑁𝑁𝑆𝑆 is the number of internal da-
tasets in 𝐹𝐹𝜋𝜋𝑖𝑖 . Smaller 𝐵𝐵𝐹𝐹𝑆𝑆𝑉𝑉𝐺𝐺  means the search space for 
sequent layers will be smaller, so that we can find a near-
optimal solution faster. The value of 𝑃𝑃𝑃𝑃𝑆𝑆𝑉𝑉𝐺𝐺  indicates the 
average privacy leakage of datasets in 𝐹𝐹𝜋𝜋𝑖𝑖 , calculated by 
𝑃𝑃𝑃𝑃𝑆𝑆𝑉𝑉𝐺𝐺 =  ∑ ∑ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑟𝑟 )𝑑𝑑𝑟𝑟 ∈𝑃𝑃𝐷𝐷(𝑑𝑑𝐹𝐹)𝑑𝑑𝐹𝐹∈𝐸𝐸𝐷𝐷𝑘𝑘 /𝑁𝑁𝑆𝑆 . Heuristically, the 
algorithm prefers to encrypt the datasets which incur less 
cost but disclose more privacy-sensitive information. 
Thus, higher 𝑃𝑃𝑃𝑃𝑆𝑆𝑉𝑉𝐺𝐺  means more datasets in 𝐹𝐹𝜋𝜋𝑖𝑖  should be 
encrypted to preserve privacy from a global perspective. 
Based on the above analysis, the heuristic value of the 
search node 𝑆𝑆𝑁𝑁𝑖𝑖  can be computed by the formula: 
𝑓𝑓(𝑆𝑆𝑁𝑁𝑖𝑖) = 𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟 (𝜀𝜀 − 𝜀𝜀𝑖𝑖+1)⁄ + (𝜀𝜀𝑖𝑖+1 ∙ 𝐶𝐶𝑑𝑑𝑒𝑒𝑠𝑠 ∙ 𝐵𝐵𝐹𝐹𝑆𝑆𝑉𝑉𝐺𝐺 )/𝑃𝑃𝑃𝑃𝑆𝑆𝑉𝑉𝐺𝐺 .  (12) 

Based on this heuristic, we design a heuristic privacy-
preserving cost reduction algorithm, denoted as H_PPCR. 
The basic idea is that the algorithm iteratively selects a 
state node with the highest heuristic value and then ex-
tends its child state nodes until it reaches a goal state 
node. The privacy-preserving solution and corresponding 
cost are derived from the goal state. 

Algorithm 1 specifies the details of our heuristic algo-
rithm. A priority queue is exploited to keep state nodes. 
Only the qualified state nodes that are added to the prior-
ity queue, i.e., the corresponding partial global solutions 
are feasible. To avoid the size of the priority queue in-
crease dramatically, the algorithm only retains the state 
nodes with top 𝐾𝐾 highest heuristic values. When deter-
mining to add child search nodes in layer 𝑃𝑃𝑖𝑖+1  into the 
priority queue, the algorithm generates a local encryption 
solution from 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖 at first. The algorithm probably suf-
fers from poor efficiency because it has to check all com-
binations of datasets in 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖 . To circumvent this situa-
tion, the algorithm ascendingly sorts the datasets in 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖  
according to the value 𝐶𝐶𝑘𝑘 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑘𝑘)⁄ , where 𝑑𝑑𝑘𝑘 ∈ 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖 and 
𝐶𝐶𝑘𝑘 = 𝑆𝑆𝑘𝑘·𝑃𝑃𝑅𝑅·𝑓𝑓𝑘𝑘 . If |𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖| is larger than a threshold 𝐶𝐶, only 
the first 𝐶𝐶 datasets in the sorted 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖  will be examined 
while the remaining are set to be encrypted. Intuitively, 
datasets with higher privacy-preserving cost and lower 
privacy leakage are expected to remain unencrypted. The 
value 𝐶𝐶𝑘𝑘 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑘𝑘)⁄  can help to guide the algorithm to find 
these datasets with a higher possibility. Hence, the algo-
rithm is guided to approach the goal state in the state 
space as close as possible. Above all, in the light of heuris-
tic  information,  the  proposed  algorithm  can  achieve  a  
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near-optimal solution practically. SORT and SELECT are 
two simple external functions as their names signify. 

5.5 Extension to SIG 
Although SITs can suit many applications, SIGs are also 
common, i.e., an intermediate dataset can originate from 
more than one parent dataset. An example of a SIG is illu-
strated in Fig.3 (a). The dataset 𝑑𝑑5 is generated from 𝑑𝑑2,  
𝑑𝑑3 and 𝑑𝑑4 , where 𝑑𝑑4  is from 𝑑𝑑2 . Thus, it is possible that 
𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑5) is larger than 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑2) or 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑3), resulting in the 
failure of Lemma 1 and RPC property. As a result, our 
approach can not be directly applied  to  a  SIG.  However,  

Fig.3. Example for extending our approach to a SIG. 

Description Iteratively identifies the intermediate datasets that 
need to be encrypted, achieving a low level priva-
cy-preserving cost under the constraint PLC1. 

Input A SIT with root 𝑑𝑑𝑜𝑜 ; all attribute values of each in-
termediate dataset are given, i.e., size, frequency, 
privacy leakage; privacy requirement threshold 𝜀𝜀. 

Output A vector of local solutions 〈𝜋𝜋1, … ,𝜋𝜋𝐻𝐻〉 that comprise 
a near-optimal global privacy-preserving solution; 
and the global privacy-preserving cost: 𝐶𝐶𝐹𝐹𝐹𝐹𝑜𝑜𝑔𝑔𝐹𝐹𝐹𝐹 . 

Step 1 Initialize the following variables. 
1.1 Define a priority queue: 𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒. 
1.2 Construct the initial search node with the root of the SIT: 𝑆𝑆𝑁𝑁0 

= 〈〈𝜋𝜋0〉 ← 〈{𝑑𝑑𝑜𝑜},∅〉,𝑓𝑓(𝑆𝑆𝑁𝑁0) ← 0,𝐸𝐸𝐷𝐷0 ← {𝑑𝑑𝑜𝑜},𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟 ← 0, 𝜀𝜀1 ← 𝜀𝜀〉 , 
i.e., the five parameters are the current solution, the current heuris-
tic value, the current 𝐸𝐸𝐷𝐷, the current cost and the privacy leakage 
requirement for the sequent layers. 

1.3 Add the node into 𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒: 𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒 ← 𝑆𝑆𝑁𝑁0 . 
Step 2 Iteratively retrieve the search nodes from 𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒, 

and in turn add their child search nodes to 𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒. 
2.1 Retrieve the search node with the highest heuristics from 𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒 : 

𝑆𝑆𝑁𝑁𝑖𝑖 ← 𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒. 
2.2 Check whether 𝐸𝐸𝐷𝐷𝑖𝑖 = ∅. If yes, a solution is found and the algorithm 

will go to Step 3. 
2.3 Label the datasets in 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖  as encrypted if their privacy leakage is 

larger than 𝜀𝜀𝑖𝑖 . Sort the unlabeled datasets in 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖   ascendingly ac-
cording to 𝐶𝐶𝑘𝑘 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑘𝑘)⁄ , 𝑑𝑑𝑘𝑘 ∈ 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖 : SORT(𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖 ). If the number of 
unlabeled datasets are larger than 𝐶𝐶, only the first 𝐶𝐶  datasets are 
considered to generate candidate nodes.  

2.4 Generate all the possible local solutions in 𝛬𝛬𝑖𝑖 . 
2.5 Select a solution from 𝛬𝛬𝑖𝑖 : 𝜋𝜋 ← SELECT(𝛬𝛬𝑖𝑖).: 

1) Calculate the privacy leakage upper bound of this solution and 
the encryption cost: 𝑃𝑃𝑃𝑃𝐹𝐹𝑜𝑜𝑐𝑐𝐹𝐹𝐹𝐹 ← ∑ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑)𝑑𝑑∈𝑈𝑈𝐷𝐷𝜋𝜋 , 𝐶𝐶𝐹𝐹𝑜𝑜𝑐𝑐𝐹𝐹𝐹𝐹 ←
∑ (𝑆𝑆𝑘𝑘 ∙ 𝐶𝐶𝑅𝑅 ∙ 𝑓𝑓𝑘𝑘)𝑑𝑑𝑘𝑘∈𝐸𝐸𝐷𝐷𝜋𝜋 , where 𝜋𝜋 = 〈𝐸𝐸𝐷𝐷𝜋𝜋 ,𝑈𝑈𝐷𝐷𝜋𝜋〉. 

2) Calculate the remaining privacy leakage 𝜀𝜀𝑖𝑖+1 ← 𝜀𝜀𝑖𝑖 − 𝑃𝑃𝑃𝑃𝐹𝐹𝑜𝑜𝑐𝑐𝐹𝐹𝐹𝐹 . 
2.6 Compute the heuristic value according to (12); 
2.7 Construct new search node from the obtained values, add it to 

𝑃𝑃𝑄𝑄𝑢𝑢𝑒𝑒𝑢𝑢𝑒𝑒. Then go to Step 2.1. 
Step 3 Obtain the global encryption cost 𝐶𝐶𝐹𝐹𝐹𝐹𝑜𝑜𝑔𝑔𝐹𝐹𝐹𝐹 : 𝐶𝐶𝐹𝐹𝐹𝐹𝑜𝑜𝑔𝑔𝐹𝐹𝐹𝐹 ←

𝐶𝐶𝑐𝑐𝑢𝑢𝑟𝑟 , and the corresponding solution 〈𝜋𝜋1, … , 𝜋𝜋𝐻𝐻〉. 
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we can adapt it to a SIG with minor modifications. 
Let 𝑑𝑑𝑚𝑚  denote a merging dataset that inherits data from 

more than one predecessor, e.g., 𝑑𝑑5 in Fig.3. As only one 
root dataset is assumed to exist in a SIG, all paths from the 
root dataset 𝑑𝑑𝑜𝑜  to 𝑑𝑑𝑚𝑚  must converge at one point beside 
𝑑𝑑𝑚𝑚  itself. Let 𝑑𝑑𝑠𝑠 denote this source dataset, e.g., 𝑑𝑑𝑠𝑠 = 𝑑𝑑𝑜𝑜  in 
Fig.3. The inequality 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑚𝑚) ≤ 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑠𝑠) holds because all 
privacy information of 𝑑𝑑𝑚𝑚  comes from 𝑑𝑑𝑠𝑠 . Let 𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) be 
the set of the offspring datasets of 𝑑𝑑𝑠𝑠 in the layer 𝑃𝑃𝑖𝑖 , then 
𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) ⊆ 𝑃𝑃𝐷𝐷(𝑑𝑑𝑠𝑠). Datasets in 𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) are split into 𝐸𝐸𝐷𝐷𝑖𝑖 
and 𝑈𝑈𝐷𝐷𝑖𝑖 when determining which datasets are encrypted. 

We discuss three cases where the graph structure can af-
fect the applicability of our approach on a SIG. The first 
one is 𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) ⊆ 𝑈𝑈𝐷𝐷𝑖𝑖, i.e., all datasets in  𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) will keep 
unencrypted, e.g., {𝑑𝑑1,𝑑𝑑2} ⊆ 𝑈𝑈𝐷𝐷1  shown in Fig.3 (b). All 
ancestor datasets of 𝑑𝑑𝑚𝑚  after the layer 𝑃𝑃𝑖𝑖  will keep unen-
crypted according to the RPC property. So, the dataset 𝑑𝑑𝑚𝑚  
poses little influence on applying our algorithm to a SIG 
because 𝑑𝑑𝑚𝑚  will not be considered in following steps. The 
second one is 𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) ⊆ 𝐸𝐸𝐷𝐷𝑖𝑖, i.e., all datasets in 𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) are 
encrypted. If 𝑑𝑑𝑚𝑚  is a child of a dataset in 𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠), 𝑑𝑑𝑚𝑚  is 
added to 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖+1  for the next round. Assume the parent 
dataset is 𝑑𝑑𝑝𝑝 . Then, we delete the edges pointing to 𝑑𝑑𝑚𝑚  
from parents except 𝑑𝑑𝑝𝑝 , e.g., 〈𝑑𝑑2,𝑑𝑑5〉  is retained while 
〈𝑑𝑑3,𝑑𝑑5〉 and 〈𝑑𝑑4,𝑑𝑑5〉 are deleted in Fig.3 (c). Logically, 𝑑𝑑𝑚𝑚  
can be deemed as a ‘compressed’ candidate dataset of sev-
eral imaginary datasets in 𝐶𝐶𝐷𝐷𝐸𝐸𝑖𝑖+1, which is similar to the 
construction of a compressed tree. The last one is that 
𝐷𝐷𝑥𝑥 ⊆ 𝑈𝑈𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑦𝑦 ⊆ 𝐸𝐸𝐷𝐷𝑖𝑖, where 𝐷𝐷𝑥𝑥 ∩ 𝐷𝐷𝑦𝑦 = ∅ and 𝐷𝐷𝑥𝑥 ∪ 𝐷𝐷𝑦𝑦 =
𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠) , i.e., part of datasets in 𝑃𝑃𝐷𝐷𝑖𝑖(𝑑𝑑𝑠𝑠)  are encrypted 
while the remainder keep unencrypted. According to the 
RPC property, it is safe to expose part of privacy informa-
tion in 𝑑𝑑𝑚𝑚 , where the part of privacy information is from 
𝐷𝐷𝑥𝑥. The edges which point to 𝑑𝑑𝑚𝑚  from datasets in 𝐷𝐷𝑥𝑥 and 
their offspring are deleted, e.g., 〈𝑑𝑑3,𝑑𝑑5〉 in Fig.3 (d). Fur-
ther, the value of 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑚𝑚) is substituted by the maximum 
value of its direct parents who are datasets in 𝐷𝐷𝑦𝑦  or the 
offspring of 𝐷𝐷𝑦𝑦  if 𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑚𝑚) is larger than the maximum.  

To make the approach for a SIT available to a SIG as 
well, three minor modifications are required. The first one 
is to identify all merging datasets. The second one is to 
adjust the SIG according to the third case discussed above 
if 𝑈𝑈𝐷𝐷𝜋𝜋 ≠ ∅ after we get a local solution 𝜋𝜋 = 〈𝐸𝐸𝐷𝐷𝜋𝜋 , 𝑈𝑈𝐷𝐷𝜋𝜋〉. 
The third one is to label the datasets that have been 
processed. In this way, it is unnecessary to explicitly delete 
edges discussed in the second case.  

6 EVALUATION 
6.1 Overall Comparison 
Encrypting all datasets for privacy preserving is widely 
adopted in existing research [8], [9], [10]. This category of 
approach is denoted as ALL_ENC. The privacy-preserving 
cost of ALL_ENC is denoted as 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃 . For datasets in set 𝐷𝐷 
of a SIT, 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  is computed by:   

𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃 = ∑ 𝑆𝑆𝑘𝑘 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑘𝑘𝑑𝑑𝑘𝑘∈𝐷𝐷 .                            (13) 
Compared with ALL_ENC, our approach only selects 

necessary intermediate datasets to encrypt while keeping 
others unencrypted. Intuitively, the cost of our approach is 

lower than the ALL_ENC approach. To further evaluate 
how our approach can prevail significantly against the 
ALL_ENC approach in saving expense, we conduct expe-
riments on real-world datasets and then extend the expe-
riments to datasets of large amounts. To facilitate the 
comparison, the privacy-preserving cost of H_PPCR is 
denoted as 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈 . Given a global privacy-preserving solu-
tion with the encrypted set ED, 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  is computed by: 

𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈 = ∑ 𝑆𝑆𝑘𝑘 ∙ 𝑃𝑃𝑅𝑅 ∙ 𝑓𝑓𝑘𝑘𝑑𝑑𝑘𝑘∈𝐸𝐸𝐷𝐷 .            (14) 
The difference between 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  and 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  is denoted as 

𝐶𝐶𝑆𝑆𝑆𝑆𝑉𝑉 ≜ 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃 − 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈 . We run both approaches on SITs with 
different 𝜀𝜀 values. According to the analysis in Section 4.2, 
threshold 𝜀𝜀  ranges in the interval [𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛 ,𝐸𝐸𝑚𝑚𝐹𝐹𝑥𝑥 ] , where 
𝐸𝐸𝑚𝑚𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑜𝑜𝐹𝐹(|𝑄𝑄𝑆𝑆| ∙ |𝑆𝑆𝐷𝐷|) and 𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛 = max0≤𝑖𝑖≤𝑛𝑛{𝑃𝑃𝑃𝑃𝑠𝑠(𝑑𝑑𝑖𝑖)}. For 
convenience, we define privacy leakage degree, denoted 
as 𝜀𝜀𝑑𝑑 ≜ (𝜀𝜀 − 𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛 )/(𝐸𝐸𝑚𝑚𝐹𝐹𝑥𝑥 − 𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛 ), to indicate privacy lea-
kage incurred by unencrypted intermediate datasets.  

6.2 Experiment Evaluation 

6.2.1 Experiment Environment 
U-Cloud is a cloud computing environment at University 
of Technology Sydney (UTS). The system overview of U-
Cloud is depicted in Fig.4. The computing facilities of this 
system are located among several labs at UTS. On top of 
hardware and Linux operating system, We install KVM 
virtualization software [30] which virtualizes the infra-
structure and provides unified computing and storage 
resources. To create virtualized data centres, we install 
OpenStack open source cloud environment [31] for global 
management, resource scheduling and interaction with 
users. Further, Hadoop [32] is installed based on the cloud 
built via OpenStack to facilitate massive data processing. 
Our experiments are conducted in this cloud environment. 

6.2.2 Experiment Process 
To demonstrate the effectiveness and scalability of our 
approach, we run H_PPCR and ALL_ENC on real-world 
datasets and extensive datasets. We first them on real-
world datasets with 𝜀𝜀𝑑𝑑  varying in [0.05, 0.9], then on ex-
tensive intermediate datasets with the number ranging in 
[50, 1000] under certain 𝜀𝜀𝑑𝑑 . For each group of experi-
ments, we repeat H_PPCR and ALL_ENC 50 times. The 
mean of cost in each experiment group are regarded as 
the representative. The margin of error with 95% confi-
dence is also measured and shown in the results. 

We first conduct our experiments on the Adult dataset  

Fig.4. System overview of U-Cloud 
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[33] which a commonly-used dataset in the privacy re-
search community. Intermediate datasets are generated 
from the original dataset, and anonymized by the algo-
rithm proposed in [12]. The privacy leakage of each data-
set is quantified as formulated in Section 4.1. The details 
about these datasets are described in Appendix D.1. 

Further, we extend experiments to intermediate data-
sets of large amounts. SITs are generated via a random 
spanning tree algorithm [34]. The values of data size and 
usage frequencies are randomly produced in the interval 
[10, 100] according to the uniform distribution. Without 
influencing the trend analysis, we set the price 𝑃𝑃𝑅𝑅 to be 
0.001. The privacy leakage values are generated randomly 
in an interval [0, Eup], where Eup is value that is by no 
means larger than the maximum entropy 𝐸𝐸𝑚𝑚𝐹𝐹𝑥𝑥  of original 
datasets. In our experiments 𝐸𝐸𝑚𝑚𝐹𝐹𝑥𝑥  is set to 18.20, meaning 
|𝑄𝑄𝑆𝑆| ∙ |𝑆𝑆𝐷𝐷| = 300,000. The thresholds 𝐶𝐶 and 𝐾𝐾 in H_PPCR 
are set to 20 and 10,000, respectively.  

6.2.3 Experiment Results and Analysis 
The experimental result on real-world datasets is de-

picted in Fig.5, from which we can see that 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  is much 
lower than 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  with different privacy leakage degree. 
Even the smallest cost saving of 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  over 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  at the left 
side of Fig.5 is more than 40%. Therefore, Fig. 5 demon-
strates our approach H_PPCR can save privacy-
preserving cost significantly over ALL-ENC approach. 
Further, we can see that the difference 𝐶𝐶𝑆𝑆𝑆𝑆𝑉𝑉  between 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  
and 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  increases when the privacy leakage degree in-
creases. This is because looser privacy leakage restraints 
imply more datasets can remain unencrypted. 

With Fig.5 where we reason about the difference be-
tween 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  and 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  with different privacy leakage de-
gree, Fig.6 illustrates how the difference changes with 
different numbers of extensive datasets while 𝜀𝜀𝑑𝑑  is cer-
tain. In most real-world cases, data owners would like the 
data privacy leakage to be much low. Thus, we select four 
low privacy leakage degrees of 0.01, 0.05, 0.1 and 0.2 to 
conduct our experiments. The selection of these specific 
values is rather random and does not affect our analysis 
because what we want to see is the trend of 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  against 
𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃 . Similarly, we set the number of 𝜀𝜀𝑑𝑑  values as four. As 
Fig.5 has shown the trend with different 𝜀𝜀𝑑𝑑  values, we do 
not have to try all values. At the same time, we woud like 
to informatively conduct the experiments. Hence, we se-
lect four values. Interested readers can try 3, 5 or other 
number of values. The conclusions will be similar. 

From Fig.6, we can see that both 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  and 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  go up 
when the number of intermediate datasets is getting larg-
er. That is, the larger the number of intermediate datasets 
is, the more privacy-preserving cost will be incurred. 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃   

Fig.5. Experiment results about real-world datasets: Change in pri-
vacy-preserving cost in relation to privacy leakage degree. 

Fig.6. Experiment results in a large number of datasets: Change in 
privacy-preserving cost in relation to the number of datasets and the 
privacy leakage degree. 
 
increases notably because it is proportional to the number 
of intermediate datasets. Given 𝜀𝜀𝑑𝑑 , 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  also increases 
with the increase of the number of datasets because more 
datasets are required to be encrypted. Moreover, Fig.6 
also shows that 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  drops when the privacy leakage de-
gree becomes larger while 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  keeps invariable. This ten-
dency complies with that shown in Fig.5. 

Most importantly, we can see from Fig.6 that the dif-
ference 𝐶𝐶𝑆𝑆𝑆𝑆𝑉𝑉  between 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  and 𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  becomes bigger and 
bigger when the number of intermediate datasets increas-
es. That is, more expense can be reduced when the num-
ber of datasets becomes larger. This trend is the result of 
the dramatic rise in 𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃  and relatively slower increase in 
𝐶𝐶𝐻𝐻𝐸𝐸𝑈𝑈  when the number of datasets is getting larger. In the 
context of Big Data, the number and sizes of datasets and 
their intermediate datasets are quite large in cloud. Thus, 
this trend means our approach can reduce the privacy-
preserving cost significantly in real-world scenarios. 

As a conclusion, both the experimental results demon-
strate that privacy-preserving cost intermediate datasets 
can be saved significantly through our approach over ex-
isting ones where all datasets are encrypted. 

7 CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed an approach that identi-
fies which part of intermediate datasets needs to be en-
crypted while the rest does not, in order to save the priva-
cy-preserving cost. A tree structure has been modeled 
from the generation relationships of intermediate datasets 
to analyze privacy propagation among datasets. We have 
modeled the problem of saving privacy-preserving cost as 
a constrained optimization problem which is addressed by 
decomposing the privacy leakage constraints. A practical 
heuristic algorithm has been designed accordingly. Evalu-
ation results on real-world datasets and larger extensive 
datasets have demonstrated the cost of preserving privacy 
in cloud can be reduced significantly with our approach 
over existing ones where all datasets are encrypted. 

(a) (b) 

(c) (d) 
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In accordance with various data and computation inten-
sive applications on cloud, intermediate dataset manage-
ment is becoming an important research area. Privacy pre-
serving for intermediate datasets is one of important yet 
challenging research issues, and needs intensive investiga-
tion. With the contributions of this paper, we are planning 
to further investigate privacy-aware efficient scheduling of 
intermediate datasets in cloud by taking privacy preserv-
ing as a metric together with other metrics such as storage 
and computation. Optimized balanced scheduling strate-
gies are expected to be developed towards overall highly 
efficient privacy aware dataset scheduling. 
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