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Abstract 

Nowadays, grid and peer-to-peer (p2p) technologies 

have become popular solutions for large-scale resource 

sharing and system integration. For e-science workflow 

systems, grid is a convenient way of constructing new 

services by composing existing services, while p2p is an 

effective approach to eliminate the performance 

bottlenecks and enhance the scalability of the systems. 

However, existing workflow systems focus either on p2p 

or grid environments and therefore cannot take 

advantage of both technologies. It is desirable to 

incorporate the two technologies in workflow systems. 

SwinDeW-G (Swinburne Decentralised Workflow for 

Grid) is a novel hybrid decentralised workflow 

management system facilitating both grid and p2p 

technologies. It is derived from the former p2p based 

SwinDeW system but redeveloped as grid services with 

communications between peers conducted in a p2p 

fashion. This paper describes the system design and 

functions of the runtime environment of SwinDeW-G. 

Index Terms: Grid Workflows, Peer-to-Peer 

Workflows, E-Science, Coordination, Decentralisation 

 

1. Introduction 

 

Recently, grid computing [11] and peer-to-peer (p2p) 

technology [1] are two popular solutions for resource 

sharing and system integration which are desirable for 

sophisticated e-science workflows. Accordingly, there is 

a demand to investigate grid and/or p2p workflow 

systems. A grid workflow can be defined as the 

composition of grid application services which execute 

on heterogeneous and distributed resources in a well-

defined order to accomplish a specific goal [21]. A p2p 

workflow, on the other hand, facilitates p2p technologies 

to workflow for direct communication and cooperation 

among relevant peers [19]. Both systems have their 

respective advantages. 

Compared with traditional workflow systems, the 

grid workflow systems have some advantages [15]: (1) 

ability to build dynamic applications which orchestrate 

distributed resources; (2) utilisation of resources that are 

located in a particular domain to increase throughput or 

reduce execution costs; (3) execution spanning multiple 

administrative domains to obtain specific processing 

capabilities; and (4) integration of multiple teams 

involved in managing of different parts of the 

experiment workflow thus promoting inter-

organisational collaborations. 

The p2p workflow systems also have some merits 

[19]. They abandon the centralised data repository and 

control engine and fulfil the whole workflow functions 

by distributing both data and control. Thus the 

performance bottlenecks are likely eliminated and the 

system scalability can be greatly enhanced. 

Inherited from our exiting work on the p2p based 

workflow system SwinDeW (Swinburne Decentralised 

Workflow) [19], SwinDeW-G (SwinDeW for Grid) also 

uses XPDL (XML Process Definition Language, 

http://www.wfmc.org/standards/xpdl.htm) for workflow 

definition. However, this paper focuses on the 

SwinDeW-G runtime environment. The specific 

requirements of the SwinDeW-G runtime environment 

are as follows. First, in order to take advantages of both 

grid computing and p2p technology, it is desirable that 

SwinDeW-G is developed as a p2p based grid workflow. 

Second, given the existence of SwinDeW, it is desirable 

that SwinDeW-G is realised in a cost effective manner, 

i.e., not developed from scratch, rather, it should be 

based on p2p based SwinDeW but ported to the grid 

environment. 

The rest of the paper is organised as follows. In the 

next section, some typical grid workflow systems are 
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discussed. Section 3 illustrates the system design which 

combines grid and p2p technologies. Section 4 then 

demonstrates the system functions of SwinDeW-G. After 

that, a case study is used to illuminate how the system 

works in Section 5. Finally, Section 6 concludes the 

paper and outlines future work.  

 

2. Related Work 

 

Our former SwinDeW described in [19] is a typical 

p2p based workflow system where the detailed related 

work of p2p workflow systems can be found there. 

Therefore, in this section, we concentrate on related 

work for grid workflow systems as it is the primary 

focus of this paper.  

With the increasing interest in grid workflow, many 

grid workflow systems emerge in recent years [20]. Here 

we choose some grid workflow systems, namely, 

Gridbus [4], Pegasus [9], Taverna [13], GrADS [3], 

ASKALON [10], GridAnt [17], Karajan [18], Triana [6], 

GridFlow [7] and Kepler [2], to demonstrate the main 

characteristics of current research outcomes and compare 

them with SwinDeW-G [16]. 

As for system installation, Gridbus and ASKALON 

only need Globus Toolkit (http://www.globus.org/ 

toolkit/), while Taverna, Karajan and Kepler only need 

Java. Pegasus, GrADS and GridAnt need other toolkits 

such as Condor’s DAGman [12], autopilot [14] and 

Apache Ant (http://ant.apatche.org), as well as Globus 

Toolkit. Tirana and GridFlow need their own platforms 

to run. Using popular toolkit brings better adaptability 

while using own toolkits brings more flexibility. 

Considering its complex runtime environment, 

SwinDeW-G chooses the more general Globus Toolkit 

and Java to develop on. 

As far as QoS (quality of service) constraints are 

concerned, most grid workflow systems mentioned 

above do not support this feature. Gridbus supports QoS 

constraints including task deadline and cost 

minimisation, GrADS and GridFlow mainly use 

estimated application execution time, and ASKALON 

supports constrains and properties specified by users or 

predefined. Right now, SwinDeW-G supports QoS 

constraints based on task deadline. 

When it comes to fault tolerance, at the task level, 

Gridbus, Taverna, ASKALON, Karajan, GridFlow and 

Kepler use alternate resource; Taverna, ASKALON and 

Karajan use retry; GrADS uses rescheduling. At the 

workflow level, rescue workflow is used by ASKALON 

and Kepler; user-defined exception handling is used by 

Karajan and Kepler. Pegasus, GridAnt and Triana use 

their particular strategies respectively. As a comparison, 

SwinDeW-G uses effective task-level temporal 

constraint verification for fault tolerance. 

As for the architecture of the workflow scheduling 

infrastructure, Pegasus, Taverna, GrADS, GridAnt, 

Karajan and Kepler use a centralised architecture; 

Gridbus and GridFlow use a hierarchical architecture; 

ASKALON and Triana use a decentralised architecture. 

It is believed that centralised schemes produce more 

efficient schedules and decentralised schemes have 

better scalabilities, while hierarchical schemes are their 

compromises. Derived from former SwinDeW, 

SwinDeW-G uses a decentralised scheme for workflow 

scheduling. 

As for scheduling strategies, Pegasus, Taverna, 

GrADS, Triana and GridFlow support performance-

driven strategies; Gridbus supports market-driven 

strategy; only ASKALON supports both performance-

driven and market-driven strategies. A performance-

driven strategy can achieve optimal execution 

performance by mapping workflow tasks onto resources 

according to specific strategies and the market-driven 

strategy tries to allocate resources for workflow tasks 

according to market models. SwinDeW-G aims at using 

a performance-driven strategy to achieve an overall load 

balance of the whole system via distributing tasks to 

least loaded neighbours. 

For intermediate data movement, Gridbus, Taverna 

and ASKALON use a centralised approach; Pegasus 

uses mediated approach; GridAnt and Karajan use user-

directed approach; GrADS, Triana and GridFlow use 

p2p approach. Kepler supports all approaches mentioned 

above. The centralised approaches are easier to 

implement and mediated approaches are more scalable 

and suitable for applications which need to keep 

intermediate data for later use, while p2p approaches are 

more suitable for those applications which involve with 

large-scale data flow. Designed to support large-scale 

workflows, SwinDeW-G chooses the p2p approaches 

not only at the data level for such as intermediate data 

movement but also at the control level for such as 

workflow execution. 

In overall terms, although the most existing grid 

workflow systems mentioned above can support the 

execution of grid workflows and have their respective 

characteristics, they do not fully facilitate the p2p 

technology to their runtime tools. While we port 

SwinDeW to grid environment as SwinDeW-G in a cost 

effective fashion, we retain its p2p feature to increase the 

system efficiency and enhance the system scalability and 

at the same time inherit the advantages of the grid 

technology.  
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3. System Design  

 

 

Figure 1: Physical Network Layout of SwinGrid Environment 

SwinDeW-G is running on a grid environment 

called SwinGrid. An overall picture of SwinGrid is 

depicted in Figure 1 which contains many grid nodes 

distributed in different places. Each grid node contains 

many computers including high performance PCs 

and/or supercomputers composed of significant 

number of computing units. The primary hosting nodes 

include the Swinburne CITR (Centre for Information 

Technology Research) Node, Swinburne ESR 

(Enterprise Systems Research laboratory) Node, 

Swinburne Astrophysics Supercomputer Node, and 

Beihang CROWN (China R&D environment Over 

Wide-area Network) [8] Node in China. They are 

running Linux, GT (Globus Toolkit) 4.04 or CROWN 

grid toolkit 2.5 where CROWN is an extension of GT 

4.04 with more middleware, hence compatible with GT 

4.04. Besides, the CROWN Node is also connected to 

some other nodes such as those in Hong Kong 

University of Science and Technology and University 

of Leeds in UK. The Swinburne Astrophysics 

Supercomputer Node is cooperating with such as 

APAC (Australian Partnership for Advanced 

Computing), VPAC (Victorian Partnership for 

Advanced Computing) and so on. Currently, 

SwinDeW-G is deployed at all primary hosting nodes. 

In SwinDeW-G, a grid workflow is executed by 

different peers that may be distributed at different grid 

nodes. As shown in Figure 1, each grid node can have 

a number of peers, and each peer can be simply viewed 

as a grid service. 

As we mentioned before, SwinDeW-G is a p2p 

based grid workflow system that enables workflows to 

be executed over a grid environment using direct p2p 

communications among peers. This is achieved by 

wrapping SwinDeW-G peers inside grid services and 

deploying them as grid middleware applications. This 

relationship can be seen in Figure 2. Once deployed, 

SwinDeW-G peers will search for and connect with 

other SwinDeW-G peers. After that, the peers use p2p 

to exchange various information required to execute a 

workflow.  
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Figure 2: Architecture of SwinDeW-G 

Unlike SwinDeW, a SwinDeW-G peer runs as a 

grid service along with other grid services. However, it 

communicates with other peers via JXTA 

(http://www.sun.com/software/jxta/), a platform for 

p2p communication. As Figure 3 shows, a SwinDeW-

G peer consists of the following components: 
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Figure 3: Architecture of SwinDeW-G Peer 

• The Task Component manages the workflow 

tasks. It has three main functions. First, it provides 

necessary information to the Flow Component for 

scheduling and stores received tasks to Task 

Repository. Second, it determines the appropriate 

time to start, execute and terminate a particular 

task according to the capability. A capability in 

SwinDeW-G is an object encapsulating rules with 

a role in workflow processes, which include the 

responsibility of this role, usage scenarios of this 

role, application-related constraints of each 

scenario (input, allowable operations, output, etc.), 

and so on. The resources that a workflow task 

instance may require are stored in the Resource 

Repository.  

• The Flow Component interacts with all other 

modules. First, it receives the workflows definition 

and then creates the instance definition. Second, it 

receives tasks from other peers or redistributes 

them. Third, it decides whether to pass a task to 

the Task Component to execute locally or 

distribute it to other peers. The decision is made 

according to the capabilities and load of itself and 

other neighbours. And finally, it makes sure that 

all executions conform to the data dependency and 

control dependency of the process definitions 

which are stored in the Process Repository and the 

Task Repository.  

• The Group Manager is the interface between the 

peer and JXTA. In JXTA, all communications are 

conducted in terms of peer group, and the Group 

Manager maintains the peer groups the peer has 

joined. The information of the peer groups and the 

peers in them is stored in the Peer Repository. 

While a SwinDeW-G peer is implemented as a 

grid service, all direct communications between 

peers are conducted via p2p. Peers communicate 

to distribute information of their current state and 

messages for process control such as heartbeat, 

process distribution, process enactment etc. 

• The User component is the interface between the 

corresponding workflow users and the workflow 

environment. In SwinDeW-G, its primary function 

is to allow users to interfere with the workflow 

instances when exceptions occur. 

Globus Toolkit serves as the grid service container 

of SwinDeW-G. Not only a SwinDeW-G peer itself is 

a grid service located inside Globus Toolkit, the 

capabilities which are needed to execute certain tasks 

are also in forms of grid services that the system can 

access. That means when a task is assigned to a peer, 

Globus Toolkit will be used to provide the required 

capability as grid service for that task. 

 

4. System functions 

4.1 Process Definition 

 

In SwinDeW-G, the process definition is specified 

in the XPDL workflow language. In general, a 

SwinDeW-G process can be represented by a two-tuple 

process notation P (Process-ID; Task-Set). Further, a 

task can be described as a four-tuple task notation T 

(Process-ID; Task-ID; Transition-Restriction-Set; 

Extended-Attribute-Set). 

For processes, Process-ID is the unique identifier of 

the process in the workflow system, and Task-Set is 

the set of tasks which constitutes the process. For tasks, 

Process-ID is the identifier of the process in the 

workflow system to which the task belongs, and Task-

ID is the unique identifier of the task in the context of 

the process.  

Transition-Restriction-Set is a set of workflow 

constraints. Each constraint represents an edge of the 

directed graph of the workflow process. Each edge can 

be described as a three-tuple notation R (Mode, 

Condition, Other-Task-ID). When Mode is ‘join’, it 

represents that this task is the end point on the flow 

edge. In this circumstance, Condition can be such as 

‘and’ or ‘or’. If it is ‘and’, the task will not be 

initialised until all ‘join’ conditions become true, and if 

it is ‘or’, the task will be instanced as long as any ‘join’ 

condition becomes true. When Mode is ‘split’, it 

represents that this task is the beginning point on the 

flow edge. Again, Condition can be such as ‘and’ or 

‘or’. If it is ‘and’, the subsequent tasks can be executed 

in parallel, and if it is ‘or’, a follow up task will be 

selected from the subsequent task list according to the 

condition in order. Finally, Other-Task-ID is the 

identifier of the task on the other end of the flow edge. 

Extended-Attribute-Set is the collection of optional 

attributes depending on the application. Each attribute 
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can be described as (Name, Value). The most 

important attribute in a task is the attribute named 

capability, the value of which indicates one of the 

required capabilities needed to execute the task. 

 

4.2 Peer Management 

 

Unlike normal grid services, SwinDeW-G is always 

considered dynamic due to the joining and leaving of 

peers. Peer management derives mostly from former 

SwinDeW. Its main function is maintaining a list of 

current neighbours which is essential for distribution, 

scheduling and execution of workflows. In detail, peer 

management has to handle the following: 

• Peer join 

In SwinDeW-G, Peer Groups are organised by 

capabilities defined in a workflow process. When a 

new peer joins SwinDeW-G, it joins a base group 

which contains all the peers in the network, 

regardless of their capabilities. In this base group, 

each peer will advertise in the group, so when a 

peer is searching for another peer, it will search 

through the advertisements to find the peer it wants. 

Then the new peer will try to join some groups 

according to each of its capabilities. If the group 

already exists, the peer simply joins it; otherwise, it 

creates a new group and joins it as creator.  

When a peer joins an existing group 

successfully, it will send an advertisement message 

to the group. Other peers which are already in this 

group will respond the advertisement and pass the 

related process definition data to the new peer. 

Also, the newly joined peer is added to these peers’ 

list of neighbours automatically. Thus the new peer 

can merge into the workflow system and be able to 

execute certain tasks immediately.  

• Peer search  

In SwinDeW-G, each peer has respective 

capabilities. When a task is distributed to a peer, it 

checks if it has the capability to execute it first. If 

the peer can execute the task, then the task will be 

passed to the Task Component for execution; else it 

will check if one of its neighbours has the requested 

capability. If there is one, it will redirect this task to 

that neighbour; otherwise it will invoke a global 

search to find if any peer has the required 

capability.  

The process of global search is described as 

follows. First, in every peer group it joined, 

including the base group of SwinDeW-G which 

contains all SwinDeW-G peers, the peer sends a 

search message to all other peers. For every peer 

who received the message, if it knows that some 

peers have the required capability, it will return the 

information of those peers to the sender. The 

process will stop when either the peers with 

required capability are found or no responses are 

received for a certain period of time, which usually 

means exception that no peer in the system has the 

required capability. 

• Peer leave 

A SwinDeW-G peer may leave the system at 

any time either explicitly or implicitly. The system 

has to respond to these events and keep the system 

running properly. In the former situation, the peer 

who is going to leave will inform the neighbours in 

its neighbour list about its leave. When its 

neighbours receive the message, they will remove 

the peer from their neighbour list accordingly. In 

the later circumstance, the discovery mechanism 

depends on the heartbeat messages which are 

gossiped periodically in the system to indicate that 

the peer who sent them is still alive. So, if a peer 

left the system unexpectedly, its heartbeat messages 

will not be heard by its neighbours anymore. When 

a peer has not heard one of its neighbours for a 

period of time, it will consider this neighbour to be 

inactive and will remove it from its neighbour list. 

In both circumstances, the tasks which are relevant 

to this peer have to be rescheduled accordingly. 

 

4.3 Task Instantiation 

 

In workflow systems, a process can be started by a 

request or a coming event. The process flowchart of 

SwinDeW-G can be described as follows. 

The peer will start a process instance when it 

receives an instantiation message. In this occasion, the 

peer will get the process ID from the message and 

searches it in its Process Repository. If the process can 

be found, the peer will check if there is an instance of 

the process already running. If there is not, it will 

create one.  

In the second step, the peer will get the ID of the 

start task and find if there is an instance of the task 

already running. If there is not, it will create one.  

Once the new task instance is instantiated, the peer 

will check the execution condition. The task can be 

executed if one of the following conditions is met: (1) 

the join condition is “and” and all the task’s 

predecessors have been done where sequential 

execution is a special case; (2) the join condition is 

“or” and one of the task’s predecessors has been done; 

(3) The task is the start task. 
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If a task can be executed, the peer will try to 

instantiate its subsequent tasks. In fact, for each 

subsequent task, it will send a message to one of its 

neighbours who has the required capability. It should 

be addressed that this peer may or may not be the peer 

on which the task will be executed. When all 

subsequent tasks are distributed, it will notify all 

predecessors that the task has been instantiated via 

sending them specific messages. 

When a peer receives the initiating message, it will 

search the least loaded peer among itself and its 

neighbours who have the necessary capability that 

needs to execute the task. To find which peer has the 

least load, Globus Toolkit can be facilitated to obtain 

the needed information which includes current CPU 

load, service availabilities etc. Once the least loaded 

peer has been found, it will then send a message to the 

peer to start the task.  

If a task has no successors, it would be the last task. 

When such a task has been done, the peer will send a 

message to the enacting peer to start execution of the 

process. 

 

4.4 Instance Execution 

 

In SwinDeW-G, whether a task can be executed on 

a peer depends on two conditions: the data condition 

and the control condition. Most workflow tasks need 

some input data to start. The data are normally the 

output of its predecessor(s). Similarly, the task also 

generates some results as the input of its successor(s). 

Only all necessary data are collected can a task be 

started. This is called data condition.  

As described earlier, a task can be executed only 

after some relevant tasks have been finished. This is 

called control condition. Unlike traditional centralised 

workflow system, this control consistency is achieved 

by collaborations among SwinDeW-G peers. Several 

control messages which are transferred between these 

peers are as follows: 

• Predecessor message 

This message is used by a predecessor task to 

notify its successor task(s) whether a task is 

completed or still being executing. When a 

successor task receives this message, it will modify 

the status of the corresponding predecessor task and 

check if it itself can be enacted. 

• Successor message 

This message is used by a successor task to 

notify its predecessor task(s) whether the task has 

been enacted or not. When a predecessor task 

receives this message, it will update the status of 

the corresponding successor task and check if it 

itself can be enacted. 

• Successor instance message 

This message is used to tell its predecessor(s) 

that an instance of this task has been created. When 

a peer receives this message, it sets the sender as 

the successor neighbour of the task instance. 

 

5. Case Study 

 

In this section, we facilitate a case study to 

illustrate how SwinDeW-G supports the execution of 

p2p based grid workflows.  

At first, we introduce some background of this case 

study. In reality, complex scientific processes are 

normally time constrained, hence temporal verification 

is needed. The tasks at which we conduct the 

verification are called checkpoints. In grid workflow 

systems, a checkpoint selection strategy (CSS) is 

responsible for selecting checkpoints for conducting 

temporal verification.  

This section discusses a case which is realised on 

SwinDeW-G. The simulation is the comparison of 

several checkpoint selection strategies where the 

details can be found in [5]. In this paper, we only focus 

on how SwinDeW-G supports these grid workflows.  

The SwinGrid grid environment has already been 

described earlier in Section 3. Figure 4 shows a partial 

workflow process that was used in the simulations and 

how it is distributed to the grid environment. The 

complete process for simulation consists of over 1000 

activities but for the sake of simplicity only 7 of them 

are shown. The workflow process executes tasks in a 

partial order. There is a branch at activity an1 where 

some tasks are executed in parallel.  

When this workflow process is executed each task 

is assigned to a peer. This assignment is based on 

which peer is suitable to execute the task. To be 

suitable the peer must first be capable of executing that 

task and not be busy with other tasks. Once all the 

activities have been assigned to a peer the workflow 

process is then executed from start to end. Each peer 

that has a task assigned to it will communicate with the 

other peers so that the workflow process executes in 

the expected order.
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Figure 4: Workflow Process Simulation Environment

 

The result shows that SwinDeW-G can support 

complicated workflows which need intensive 

computation because it uses grid to execute workflow 

tasks, and its p2p based communication can reduce the 

overall traffic for increasing the efficiency and 

improving the scalability. 

It has been demonstrated that the test workflows 

can run on SwinDeW-G properly and many useful 

outcomes can be drawn. It can be concluded that 

SwinDeW-G is a suitable p2p based grid workflow 

environment that can support sophisticated e-science 

applications effectively. In summary, our primary 

requirements of SwinDeW-G described in Section 1 

are successfully achieved. 

 

6. Conclusions and Future Work 
 

In this paper, we have presented the runtime 

environment of SwinDeW-G (Swinburne Decentralised 

Workflow for Grid) which is a novel peer-to-peer (p2p) 

based grid workflow system incorporating p2p and grid 

technologies for taking advantages of both. The 

SwinDeW-G runtime environment is realised based on 

former SwinDeW p2p based workflow system as grid 

services to reduce the development cost. The utilisation 

of the grid technology provides more power to handle 

sophisticated e-science workflow applications while 

the facilitation of the p2p technology improves the 

performance and increases the scalability of the system.  

In the future, SwinDeW-G still needs further 

improvement. On one hand, load balancing would 

occur when multiple peers have the same capability. 

However, the task scheduling is now primarily 

performed at the task instantiation stage and static in 

the current system which is insufficient. New 

scheduling algorithms will be developed to balance the 

load which is of course in a dynamic and distributed 

manner. On the other hand, monitoring is not 

implemented in the current version. However, it would 

be desirable to be able to monitor the status of the 

workflows. 
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