
 1

Peer-to-Peer Based Grid Workflow Runtime Environment of

SwinDeW-G

Yun Yang
1
, Ke Liu

2, 1
, Jinjun Chen

1
, Joël Lignier

1
, Hai Jin

2

1- Faculty of Information and Communication Technologies

Swinburne University of Technology

Hawthorn, Melbourne, Australia 3122

{yyang, kliu, jchen, jlignier}@ict.swin.edu.au

2- School of Computer Science & Technology

Huazhong University of Science and Technology

Wuhan, Hubei, China 430022

hjin@hust.edu.cn

Abstract

Nowadays, grid and peer-to-peer (p2p) technologies

have become popular solutions for large-scale resource

sharing and system integration. For e-science workflow

systems, grid is a convenient way of constructing new

services by composing existing services, while p2p is an

effective approach to eliminate the performance

bottlenecks and enhance the scalability of the systems.

However, existing workflow systems focus either on p2p

or grid environments and therefore cannot take

advantage of both technologies. It is desirable to

incorporate the two technologies in workflow systems.

SwinDeW-G (Swinburne Decentralised Workflow for

Grid) is a novel hybrid decentralised workflow

management system facilitating both grid and p2p

technologies. It is derived from the former p2p based

SwinDeW system but redeveloped as grid services with

communications between peers conducted in a p2p

fashion. This paper describes the system design and

functions of the runtime environment of SwinDeW-G.

Index Terms: Grid Workflows, Peer-to-Peer

Workflows, E-Science, Coordination, Decentralisation

1. Introduction

Recently, grid computing [11] and peer-to-peer (p2p)

technology [1] are two popular solutions for resource

sharing and system integration which are desirable for

sophisticated e-science workflows. Accordingly, there is

a demand to investigate grid and/or p2p workflow

systems. A grid workflow can be defined as the

composition of grid application services which execute

on heterogeneous and distributed resources in a well-

defined order to accomplish a specific goal [21]. A p2p

workflow, on the other hand, facilitates p2p technologies

to workflow for direct communication and cooperation

among relevant peers [19]. Both systems have their

respective advantages.

Compared with traditional workflow systems, the

grid workflow systems have some advantages [15]: (1)

ability to build dynamic applications which orchestrate

distributed resources; (2) utilisation of resources that are

located in a particular domain to increase throughput or

reduce execution costs; (3) execution spanning multiple

administrative domains to obtain specific processing

capabilities; and (4) integration of multiple teams

involved in managing of different parts of the

experiment workflow thus promoting inter-

organisational collaborations.

The p2p workflow systems also have some merits

[19]. They abandon the centralised data repository and

control engine and fulfil the whole workflow functions

by distributing both data and control. Thus the

performance bottlenecks are likely eliminated and the

system scalability can be greatly enhanced.

Inherited from our exiting work on the p2p based

workflow system SwinDeW (Swinburne Decentralised

Workflow) [19], SwinDeW-G (SwinDeW for Grid) also

uses XPDL (XML Process Definition Language,

http://www.wfmc.org/standards/xpdl.htm) for workflow

definition. However, this paper focuses on the

SwinDeW-G runtime environment. The specific

requirements of the SwinDeW-G runtime environment

are as follows. First, in order to take advantages of both

grid computing and p2p technology, it is desirable that

SwinDeW-G is developed as a p2p based grid workflow.

Second, given the existence of SwinDeW, it is desirable

that SwinDeW-G is realised in a cost effective manner,

i.e., not developed from scratch, rather, it should be

based on p2p based SwinDeW but ported to the grid

environment.

The rest of the paper is organised as follows. In the

next section, some typical grid workflow systems are

 2

discussed. Section 3 illustrates the system design which

combines grid and p2p technologies. Section 4 then

demonstrates the system functions of SwinDeW-G. After

that, a case study is used to illuminate how the system

works in Section 5. Finally, Section 6 concludes the

paper and outlines future work.

2. Related Work

Our former SwinDeW described in [19] is a typical

p2p based workflow system where the detailed related

work of p2p workflow systems can be found there.

Therefore, in this section, we concentrate on related

work for grid workflow systems as it is the primary

focus of this paper.

With the increasing interest in grid workflow, many

grid workflow systems emerge in recent years [20]. Here

we choose some grid workflow systems, namely,

Gridbus [4], Pegasus [9], Taverna [13], GrADS [3],

ASKALON [10], GridAnt [17], Karajan [18], Triana [6],

GridFlow [7] and Kepler [2], to demonstrate the main

characteristics of current research outcomes and compare

them with SwinDeW-G [16].

As for system installation, Gridbus and ASKALON

only need Globus Toolkit (http://www.globus.org/

toolkit/), while Taverna, Karajan and Kepler only need

Java. Pegasus, GrADS and GridAnt need other toolkits

such as Condor’s DAGman [12], autopilot [14] and

Apache Ant (http://ant.apatche.org), as well as Globus

Toolkit. Tirana and GridFlow need their own platforms

to run. Using popular toolkit brings better adaptability

while using own toolkits brings more flexibility.

Considering its complex runtime environment,

SwinDeW-G chooses the more general Globus Toolkit

and Java to develop on.

As far as QoS (quality of service) constraints are

concerned, most grid workflow systems mentioned

above do not support this feature. Gridbus supports QoS

constraints including task deadline and cost

minimisation, GrADS and GridFlow mainly use

estimated application execution time, and ASKALON

supports constrains and properties specified by users or

predefined. Right now, SwinDeW-G supports QoS

constraints based on task deadline.

When it comes to fault tolerance, at the task level,

Gridbus, Taverna, ASKALON, Karajan, GridFlow and

Kepler use alternate resource; Taverna, ASKALON and

Karajan use retry; GrADS uses rescheduling. At the

workflow level, rescue workflow is used by ASKALON

and Kepler; user-defined exception handling is used by

Karajan and Kepler. Pegasus, GridAnt and Triana use

their particular strategies respectively. As a comparison,

SwinDeW-G uses effective task-level temporal

constraint verification for fault tolerance.

As for the architecture of the workflow scheduling

infrastructure, Pegasus, Taverna, GrADS, GridAnt,

Karajan and Kepler use a centralised architecture;

Gridbus and GridFlow use a hierarchical architecture;

ASKALON and Triana use a decentralised architecture.

It is believed that centralised schemes produce more

efficient schedules and decentralised schemes have

better scalabilities, while hierarchical schemes are their

compromises. Derived from former SwinDeW,

SwinDeW-G uses a decentralised scheme for workflow

scheduling.

As for scheduling strategies, Pegasus, Taverna,

GrADS, Triana and GridFlow support performance-

driven strategies; Gridbus supports market-driven

strategy; only ASKALON supports both performance-

driven and market-driven strategies. A performance-

driven strategy can achieve optimal execution

performance by mapping workflow tasks onto resources

according to specific strategies and the market-driven

strategy tries to allocate resources for workflow tasks

according to market models. SwinDeW-G aims at using

a performance-driven strategy to achieve an overall load

balance of the whole system via distributing tasks to

least loaded neighbours.

For intermediate data movement, Gridbus, Taverna

and ASKALON use a centralised approach; Pegasus

uses mediated approach; GridAnt and Karajan use user-

directed approach; GrADS, Triana and GridFlow use

p2p approach. Kepler supports all approaches mentioned

above. The centralised approaches are easier to

implement and mediated approaches are more scalable

and suitable for applications which need to keep

intermediate data for later use, while p2p approaches are

more suitable for those applications which involve with

large-scale data flow. Designed to support large-scale

workflows, SwinDeW-G chooses the p2p approaches

not only at the data level for such as intermediate data

movement but also at the control level for such as

workflow execution.

In overall terms, although the most existing grid

workflow systems mentioned above can support the

execution of grid workflows and have their respective

characteristics, they do not fully facilitate the p2p

technology to their runtime tools. While we port

SwinDeW to grid environment as SwinDeW-G in a cost

effective fashion, we retain its p2p feature to increase the

system efficiency and enhance the system scalability and

at the same time inherit the advantages of the grid

technology.

 3

3. System Design

Figure 1: Physical Network Layout of SwinGrid Environment

SwinDeW-G is running on a grid environment

called SwinGrid. An overall picture of SwinGrid is

depicted in Figure 1 which contains many grid nodes

distributed in different places. Each grid node contains

many computers including high performance PCs

and/or supercomputers composed of significant

number of computing units. The primary hosting nodes

include the Swinburne CITR (Centre for Information

Technology Research) Node, Swinburne ESR

(Enterprise Systems Research laboratory) Node,

Swinburne Astrophysics Supercomputer Node, and

Beihang CROWN (China R&D environment Over

Wide-area Network) [8] Node in China. They are

running Linux, GT (Globus Toolkit) 4.04 or CROWN

grid toolkit 2.5 where CROWN is an extension of GT

4.04 with more middleware, hence compatible with GT

4.04. Besides, the CROWN Node is also connected to

some other nodes such as those in Hong Kong

University of Science and Technology and University

of Leeds in UK. The Swinburne Astrophysics

Supercomputer Node is cooperating with such as

APAC (Australian Partnership for Advanced

Computing), VPAC (Victorian Partnership for

Advanced Computing) and so on. Currently,

SwinDeW-G is deployed at all primary hosting nodes.

In SwinDeW-G, a grid workflow is executed by

different peers that may be distributed at different grid

nodes. As shown in Figure 1, each grid node can have

a number of peers, and each peer can be simply viewed

as a grid service.

As we mentioned before, SwinDeW-G is a p2p

based grid workflow system that enables workflows to

be executed over a grid environment using direct p2p

communications among peers. This is achieved by

wrapping SwinDeW-G peers inside grid services and

deploying them as grid middleware applications. This

relationship can be seen in Figure 2. Once deployed,

SwinDeW-G peers will search for and connect with

other SwinDeW-G peers. After that, the peers use p2p

to exchange various information required to execute a

workflow.

Grid Services

SwinDeW-G Peers

Peer

Peer
Peerp2p

p2p
p2p

Grid Workflow

Specification

Grid Workflow

Applications

Grid Middleware

Grid Resources

Workflow

Definition

Build Time

Run Time

Workflow

Execution

& Control

Interaction with

Grid Resources

Figure 2: Architecture of SwinDeW-G

Unlike SwinDeW, a SwinDeW-G peer runs as a

grid service along with other grid services. However, it

communicates with other peers via JXTA

(http://www.sun.com/software/jxta/), a platform for

p2p communication. As Figure 3 shows, a SwinDeW-

G peer consists of the following components:

 4

Repositories

Resource

User Component

Task Component

Flow Component

Componets

SwinDeW-G Peer

Grid Platform

Globus Toolkit

Other

Peers

Group Manager

Task

Process

Peer

Repository

JX
T
A

Figure 3: Architecture of SwinDeW-G Peer

• The Task Component manages the workflow

tasks. It has three main functions. First, it provides

necessary information to the Flow Component for

scheduling and stores received tasks to Task

Repository. Second, it determines the appropriate

time to start, execute and terminate a particular

task according to the capability. A capability in

SwinDeW-G is an object encapsulating rules with

a role in workflow processes, which include the

responsibility of this role, usage scenarios of this

role, application-related constraints of each

scenario (input, allowable operations, output, etc.),

and so on. The resources that a workflow task

instance may require are stored in the Resource

Repository.

• The Flow Component interacts with all other

modules. First, it receives the workflows definition

and then creates the instance definition. Second, it

receives tasks from other peers or redistributes

them. Third, it decides whether to pass a task to

the Task Component to execute locally or

distribute it to other peers. The decision is made

according to the capabilities and load of itself and

other neighbours. And finally, it makes sure that

all executions conform to the data dependency and

control dependency of the process definitions

which are stored in the Process Repository and the

Task Repository.

• The Group Manager is the interface between the

peer and JXTA. In JXTA, all communications are

conducted in terms of peer group, and the Group

Manager maintains the peer groups the peer has

joined. The information of the peer groups and the

peers in them is stored in the Peer Repository.

While a SwinDeW-G peer is implemented as a

grid service, all direct communications between

peers are conducted via p2p. Peers communicate

to distribute information of their current state and

messages for process control such as heartbeat,

process distribution, process enactment etc.

• The User component is the interface between the

corresponding workflow users and the workflow

environment. In SwinDeW-G, its primary function

is to allow users to interfere with the workflow

instances when exceptions occur.

Globus Toolkit serves as the grid service container

of SwinDeW-G. Not only a SwinDeW-G peer itself is

a grid service located inside Globus Toolkit, the

capabilities which are needed to execute certain tasks

are also in forms of grid services that the system can

access. That means when a task is assigned to a peer,

Globus Toolkit will be used to provide the required

capability as grid service for that task.

4. System functions

4.1 Process Definition

In SwinDeW-G, the process definition is specified

in the XPDL workflow language. In general, a

SwinDeW-G process can be represented by a two-tuple

process notation P (Process-ID; Task-Set). Further, a

task can be described as a four-tuple task notation T

(Process-ID; Task-ID; Transition-Restriction-Set;

Extended-Attribute-Set).

For processes, Process-ID is the unique identifier of

the process in the workflow system, and Task-Set is

the set of tasks which constitutes the process. For tasks,

Process-ID is the identifier of the process in the

workflow system to which the task belongs, and Task-

ID is the unique identifier of the task in the context of

the process.

Transition-Restriction-Set is a set of workflow

constraints. Each constraint represents an edge of the

directed graph of the workflow process. Each edge can

be described as a three-tuple notation R (Mode,

Condition, Other-Task-ID). When Mode is ‘join’, it

represents that this task is the end point on the flow

edge. In this circumstance, Condition can be such as

‘and’ or ‘or’. If it is ‘and’, the task will not be

initialised until all ‘join’ conditions become true, and if

it is ‘or’, the task will be instanced as long as any ‘join’

condition becomes true. When Mode is ‘split’, it

represents that this task is the beginning point on the

flow edge. Again, Condition can be such as ‘and’ or

‘or’. If it is ‘and’, the subsequent tasks can be executed

in parallel, and if it is ‘or’, a follow up task will be

selected from the subsequent task list according to the

condition in order. Finally, Other-Task-ID is the

identifier of the task on the other end of the flow edge.

Extended-Attribute-Set is the collection of optional

attributes depending on the application. Each attribute

 5

can be described as (Name, Value). The most

important attribute in a task is the attribute named

capability, the value of which indicates one of the

required capabilities needed to execute the task.

4.2 Peer Management

Unlike normal grid services, SwinDeW-G is always

considered dynamic due to the joining and leaving of

peers. Peer management derives mostly from former

SwinDeW. Its main function is maintaining a list of

current neighbours which is essential for distribution,

scheduling and execution of workflows. In detail, peer

management has to handle the following:

• Peer join

In SwinDeW-G, Peer Groups are organised by

capabilities defined in a workflow process. When a

new peer joins SwinDeW-G, it joins a base group

which contains all the peers in the network,

regardless of their capabilities. In this base group,

each peer will advertise in the group, so when a

peer is searching for another peer, it will search

through the advertisements to find the peer it wants.

Then the new peer will try to join some groups

according to each of its capabilities. If the group

already exists, the peer simply joins it; otherwise, it

creates a new group and joins it as creator.

When a peer joins an existing group

successfully, it will send an advertisement message

to the group. Other peers which are already in this

group will respond the advertisement and pass the

related process definition data to the new peer.

Also, the newly joined peer is added to these peers’

list of neighbours automatically. Thus the new peer

can merge into the workflow system and be able to

execute certain tasks immediately.

• Peer search

In SwinDeW-G, each peer has respective

capabilities. When a task is distributed to a peer, it

checks if it has the capability to execute it first. If

the peer can execute the task, then the task will be

passed to the Task Component for execution; else it

will check if one of its neighbours has the requested

capability. If there is one, it will redirect this task to

that neighbour; otherwise it will invoke a global

search to find if any peer has the required

capability.

The process of global search is described as

follows. First, in every peer group it joined,

including the base group of SwinDeW-G which

contains all SwinDeW-G peers, the peer sends a

search message to all other peers. For every peer

who received the message, if it knows that some

peers have the required capability, it will return the

information of those peers to the sender. The

process will stop when either the peers with

required capability are found or no responses are

received for a certain period of time, which usually

means exception that no peer in the system has the

required capability.

• Peer leave

A SwinDeW-G peer may leave the system at

any time either explicitly or implicitly. The system

has to respond to these events and keep the system

running properly. In the former situation, the peer

who is going to leave will inform the neighbours in

its neighbour list about its leave. When its

neighbours receive the message, they will remove

the peer from their neighbour list accordingly. In

the later circumstance, the discovery mechanism

depends on the heartbeat messages which are

gossiped periodically in the system to indicate that

the peer who sent them is still alive. So, if a peer

left the system unexpectedly, its heartbeat messages

will not be heard by its neighbours anymore. When

a peer has not heard one of its neighbours for a

period of time, it will consider this neighbour to be

inactive and will remove it from its neighbour list.

In both circumstances, the tasks which are relevant

to this peer have to be rescheduled accordingly.

4.3 Task Instantiation

In workflow systems, a process can be started by a

request or a coming event. The process flowchart of

SwinDeW-G can be described as follows.

The peer will start a process instance when it

receives an instantiation message. In this occasion, the

peer will get the process ID from the message and

searches it in its Process Repository. If the process can

be found, the peer will check if there is an instance of

the process already running. If there is not, it will

create one.

In the second step, the peer will get the ID of the

start task and find if there is an instance of the task

already running. If there is not, it will create one.

Once the new task instance is instantiated, the peer

will check the execution condition. The task can be

executed if one of the following conditions is met: (1)

the join condition is “and” and all the task’s

predecessors have been done where sequential

execution is a special case; (2) the join condition is

“or” and one of the task’s predecessors has been done;

(3) The task is the start task.

 6

If a task can be executed, the peer will try to

instantiate its subsequent tasks. In fact, for each

subsequent task, it will send a message to one of its

neighbours who has the required capability. It should

be addressed that this peer may or may not be the peer

on which the task will be executed. When all

subsequent tasks are distributed, it will notify all

predecessors that the task has been instantiated via

sending them specific messages.

When a peer receives the initiating message, it will

search the least loaded peer among itself and its

neighbours who have the necessary capability that

needs to execute the task. To find which peer has the

least load, Globus Toolkit can be facilitated to obtain

the needed information which includes current CPU

load, service availabilities etc. Once the least loaded

peer has been found, it will then send a message to the

peer to start the task.

If a task has no successors, it would be the last task.

When such a task has been done, the peer will send a

message to the enacting peer to start execution of the

process.

4.4 Instance Execution

In SwinDeW-G, whether a task can be executed on

a peer depends on two conditions: the data condition

and the control condition. Most workflow tasks need

some input data to start. The data are normally the

output of its predecessor(s). Similarly, the task also

generates some results as the input of its successor(s).

Only all necessary data are collected can a task be

started. This is called data condition.

As described earlier, a task can be executed only

after some relevant tasks have been finished. This is

called control condition. Unlike traditional centralised

workflow system, this control consistency is achieved

by collaborations among SwinDeW-G peers. Several

control messages which are transferred between these

peers are as follows:

• Predecessor message

This message is used by a predecessor task to

notify its successor task(s) whether a task is

completed or still being executing. When a

successor task receives this message, it will modify

the status of the corresponding predecessor task and

check if it itself can be enacted.

• Successor message

This message is used by a successor task to

notify its predecessor task(s) whether the task has

been enacted or not. When a predecessor task

receives this message, it will update the status of

the corresponding successor task and check if it

itself can be enacted.

• Successor instance message

This message is used to tell its predecessor(s)

that an instance of this task has been created. When

a peer receives this message, it sets the sender as

the successor neighbour of the task instance.

5. Case Study

In this section, we facilitate a case study to

illustrate how SwinDeW-G supports the execution of

p2p based grid workflows.

At first, we introduce some background of this case

study. In reality, complex scientific processes are

normally time constrained, hence temporal verification

is needed. The tasks at which we conduct the

verification are called checkpoints. In grid workflow

systems, a checkpoint selection strategy (CSS) is

responsible for selecting checkpoints for conducting

temporal verification.

This section discusses a case which is realised on

SwinDeW-G. The simulation is the comparison of

several checkpoint selection strategies where the

details can be found in [5]. In this paper, we only focus

on how SwinDeW-G supports these grid workflows.

The SwinGrid grid environment has already been

described earlier in Section 3. Figure 4 shows a partial

workflow process that was used in the simulations and

how it is distributed to the grid environment. The

complete process for simulation consists of over 1000

activities but for the sake of simplicity only 7 of them

are shown. The workflow process executes tasks in a

partial order. There is a branch at activity an1 where

some tasks are executed in parallel.

When this workflow process is executed each task

is assigned to a peer. This assignment is based on

which peer is suitable to execute the task. To be

suitable the peer must first be capable of executing that

task and not be busy with other tasks. Once all the

activities have been assigned to a peer the workflow

process is then executed from start to end. Each peer

that has a task assigned to it will communicate with the

other peers so that the workflow process executes in

the expected order.

 7

Figure 4: Workflow Process Simulation Environment

The result shows that SwinDeW-G can support

complicated workflows which need intensive

computation because it uses grid to execute workflow

tasks, and its p2p based communication can reduce the

overall traffic for increasing the efficiency and

improving the scalability.

It has been demonstrated that the test workflows

can run on SwinDeW-G properly and many useful

outcomes can be drawn. It can be concluded that

SwinDeW-G is a suitable p2p based grid workflow

environment that can support sophisticated e-science

applications effectively. In summary, our primary

requirements of SwinDeW-G described in Section 1

are successfully achieved.

6. Conclusions and Future Work

In this paper, we have presented the runtime

environment of SwinDeW-G (Swinburne Decentralised

Workflow for Grid) which is a novel peer-to-peer (p2p)

based grid workflow system incorporating p2p and grid

technologies for taking advantages of both. The

SwinDeW-G runtime environment is realised based on

former SwinDeW p2p based workflow system as grid

services to reduce the development cost. The utilisation

of the grid technology provides more power to handle

sophisticated e-science workflow applications while

the facilitation of the p2p technology improves the

performance and increases the scalability of the system.

In the future, SwinDeW-G still needs further

improvement. On one hand, load balancing would

occur when multiple peers have the same capability.

However, the task scheduling is now primarily

performed at the task instantiation stage and static in

the current system which is insufficient. New

scheduling algorithms will be developed to balance the

load which is of course in a dynamic and distributed

manner. On the other hand, monitoring is not

implemented in the current version. However, it would

be desirable to be able to monitor the status of the

workflows.

Acknowledgement

The research work reported in this paper is partly

supported by Australian Research Council under

Discovery Grant DP0663841 and Linkage Grant

LP0669660.

References

[1] K. Aberer and M. Hauswirth, “Peer-to-peer

information systems: Concepts and models, state-

of-the-art, and future systems”, Proc. of 8th

European Software Engineering Conf. (ESEC) and

9th ACM SIGSOFT Symp. Foundations Software

Engineering (FSE-9), Vienna, Austria, Sep. 2001,

pp. 326–327.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B.

Ludäscher and S. Mock, “Kepler: An Extensible

System for Design and Execution of Scientific

Workflows”, Proc. of 16th International

Conference on Scientific and Statistical Database

Management (SSDBM 2004), Santorini Island,

Greece, June 2004, pp. 423-424.

 8

[3] F. Berman, A. Chien, K. Cooper, J. Dongarra, I.

Foster, D. Gannon, L. Johnsson, K. Kennedy, C.

Kesselman, J. Mellor-Crummey, D. Reed, L.

Torczon and R. Wolski, “The GrADS Project:

Software Support for High-Level Grid Application

Development”, International Journal of High

Performance Computing Applications (JHPCA),

15(4):327-344, Winter 2001.

[4] R. Buyya and S. Venugopal, “The Gridbus Toolkit

for Service Oriented Grid and Utility Computing:

An Overview and Status Report”, Proc. of 1st IEEE

International Workshop on Grid Economics and

Business Models (GECON 2004), Seoul, Korea,

Apr. 2004, pp. 19-36.

[5] J. Chen and Y. Yang, “Adaptive Selection of

Necessary and Sufficient Checkpoints for Dynamic

Verification of Temporal Constraints in Grid

Workflow Systems”, ACM Transactions on

Autonomous and Adaptive Systems, 2(2): Article 6,

June 2007 (http://www.acm.org/pubs/taas/)

[6] D. Churches, G. Gombas, A. Harrison, J. Maassen,

C. Robinson, M. Shields, I. Taylor and I. Wang,

“Programming Scientific and Distributed Workflow

with Triana Services”, Concurrency and

Computation: Practice and Experience,

18(10):1021–1037, Dec. 2005.

[7] J. Coa, S. Jarvis, S. Saini, and G. Nudd, “GridFlow:

Workflow Managament for Grod Computing”,

Proc. of 3rd International Symposium on Cluster

Computing and the Grid, 2003, (CCGrid 2003),

Tokyo, Japan, May 2003, pp. 198-205.

[8] CROWN Team 2006, CROWN portal, http://www.

crown.org.cn/en/, accessed on July 1, 2007.

[9] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G.

Mehta and K. Vahi, “Mapping Abstract Complex

Workflows onto Grid Environments”, Journal of

Grid Computing, 1:25-39, 2003.

[10] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C.

Seragiotto Jr. and H. L. Truong, “ASKALON: A
Tool Set for Cluster and Grid Computing”,

Concurrency and Computation: Practice and

Experience, 17:143-169, 2005.

[11] I. Foster and C. Kesselman (editors), The Grid:

Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers, USA, 1998.

[12] J. Frey, T. Tannenbaum, I. Foster, M. Livny and S.

Tuecke, “Condor-G: A Computation Management

Agent for Multi-Institutional Grids”, Cluster

Computing, 5: 237-246, 2002.

[13] T. Oinn, M. Addis, J. Ferris, D. Marvin, M.

Senger, M. Greenwood, T. Carver and K. Glover,

M.R. Pocock, A. Wipat, and P. Li, “Taverna: A

Tool for the Composition and Enactment of

Bioinformatics Workflows”, Bioinformatics,

20(17):3045-3054, 2004.

[14] D. Reed and R. L. Ribler, “Performance Analysis

and Visualization”, In I. Foster and C. Kesselman,

editors, The Grid: Blueprint for a New Computing

Infrastructure, pp. 367–394, Morgan Kaufmann

Publishers, USA, 1998.

[15] D.P. Spooner, J. Cao, S. A. Jarvis, L. He and G. R.

Nudd, “Performance-aware Workflow Management

for Grid Computing”, The Computer Journal,

48(3): 347-357, 2004.

[16] SwinDeW-G Team 2006, System Architecture of

SwinDeW-G, http://www.ict.swin.edu.au/personal/

jchen/SwinDeW-G/System_Architecture.pdf,

accessed on July 1, 2007.

[17] G. von Laszewski, K. Amin, M. Hategan, N. J.

Zaluzec, S. Hampton and A. Rossi, “GridAnt: A

Client-Controllable Grid Workflow System”, Proc.

of 37th Hawaii International Conference on System

Sciences (HICSS-37), Hawaii, USA, Jan. 2004, pp.

210-219.

[18] G. von Laszewski and M. Hategan, “Java CoG Kit

Karajan/GridAnt Workflow Guide”, Technical

Report, Argonne National Laboratory, Argonne, IL,

USA, 2005.

[19] J. Yan, Y. Yang and G. K. Raikundalia,

“SwinDeW - A Peer-to-peer based Decentralized

Workflow Management System”, IEEE

Transactions on Systems, Man and Cybernetics,

Part A, 36(5):922-935, 2006.

[20] J. Yu and R. Buyya, “A Taxonomy of Workflow

Management Systems for Grid Computing”,

Journal of Grid Computing, 3:171-200, Sept. 2005.

[21] J. Yu and R. Buyya, “A Novel Architecture for

Realizing Grid Workflow using Tuple Spaces“,

Proc. of 5th IEEE/ACM International Workshop on

Grid Computing (GRID 2004), Pittsburgh, USA,

Nov. 2004, pp. 119-128.

